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Abstract

Modelling Shade-Intolerant Tree Responses to Forest Edges

By

J

Kara-Lyne Shaw

September 14th, 2023

Abstract: Amidst growing global forest fragmentation, understanding the impacts of
edges on forest ecosystems has become increasingly important for researchers and con-
servationists. However, the expanding scope of edge creation highlights the limitations
of field studies. Models offer an accessible means to simulate edge effects in a time
and cost effective manner. This thesis explores the potential of ordinary differential
equation (ODE) models to describe simulated vegetation responses of shade-intolerant
trees following the establishment of a clear-cut edge in a boreal ecosystem. Through
time-dependent parameters, I developed a suite of nested models capturing observable
population trends in seedlings, saplings, and adult shade-intolerant trees. Sensitivity
analyses were conducted to assess model robustness and predictive capability. This
research will contribute to future implementations of edge vegetation response models,
aiming to enhance our understanding of the long-term effects of edge creation.
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Chapter 1

Introduction

1.1 Background

Approximately 70% of remaining forested area on Earth is within 1 km of a forest
edge (Haddad et al., 2015). As global forest fragmentation continues to increase, there
has been remarkable effort put forth by edge researchers to better understand the
impacts of edge creation. Over the previous three decades, there has been a significant
increase in the number of studies on vegetation responses at forest edges (Franklin
et al., 2021). Such studies explore how edge creation influences interior forests given
a variety of factors such as the origin of edge creation, forest type, and geographical
location (Ries et al., 2004).

Forest edges, as defined by Franklin et al. (2021), are the transitional areas between
forested and nonforested regions that play a critical role in shaping landscapes. As
the edge of a forest is often ecologically distinct from adjacent patches, understanding
the underlying system dynamics and ecological patterns of habitats near the edge
is integral to understanding the impacts of habitat fragmentation (Ries et al., 2004).

The presence of a forest edge has the potential to strongly influence adjacent ecological
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systems (Harper et al., 2005). Edge influence describes the detectable differences in
community structure, composition, and function between the edge and interior forest
(Murcia, 1995; Ruffell & Didham, 2016; Harper et al., 2005). Edge creation can elicit
diverse habitat responses, encompassing abiotic factors like temperature and humidity,
as well as biological aspects like species abundance and distribution (Murcia, 1995;

Didham & Lawton, 1999; Laurance et al., 2002).

1.2 Forest Edge Types

Forest edges are classified as either the result of a disturbance or inherent features
of the landscape (Franklin et al., 2021). Thomas et al. (1979) describe the presence of
inherent edges within a landscape as attributed to geomorphic conditions or various
other factors, and consider them to be integral components of the overall terrain. Edges
created as a result of a disturbance are classified as either natural or anthropogenic
edges. Anthropogenic edges are edges created as a result of anthropogenic influence
such as forest harvesting, agricultural development, or roads (Franklin et al., 2021).
Natural edges however, are defined by Franklin et al. (2021) as the result of a natural
phenomena such as wildfires or insect outbreaks.

Franklin et al. (2021) found that a vast majority of edge studies focus on anthro-
pogenic edges. However, natural edges also exhibit distinct vegetation patterns when
compared to neighbouring patches and should be considered for further exploration.
As such, the results of this synthesis suggested that both anthropogenic and natural
edges are dynamic features of fragmented landscapes, indicating a further need for
empirical studies for both edge types.

Edges established as a result of a disturbance often alter the ecosystem dynamics

of neighbouring habitats (Franklin et al., 2021). Disturbance edges have the potential
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to alter the microclimate conditions of its neighbouring patches (Harper et al., 2005).
Increased exposure levels of factors such as sunlight, wind, and temperature variations
can lead to changes in moisture levels, temperature gradients, and light availability
(Braithwaite & Mallik, 2012; Hofmeister et al., 2019). Chen et al. (1992) found that
these changes may lead to increased seedling establishment and plant growth at edge
communities. Created edges alter the flow of organisms, energy, and materials between
adjacent systems (Ries et al., 2004; Schtickzelle & Baguette, 2003). Likewise, distur-
bance edges influence interactions among species such as the spread of pathogens,
pollination, seed dispersal, and herbivory, altering overall biodiversity (Murcia, 1995;
Didham et al., 2012). Turner et al. (1993) defined disturbance edges as catalysts
for a cascade of ecological processes, including secondary succession, patch dynamics,
and landscape connectivity, with far-reaching implications for broader-scale ecological
phenomena such as dispersal patterns, gene flow, and metapopulation dynamics.
Haddad et al. (2015) define anthropogenically-induced edges as the result of human-
transformed land cover (e.g., roads, crops, pastures, etc.). As global forest fragmenta-
tion continues to increase, the findings of this synthesis suggest that understanding the
effects caused by various anthropogenic edge types is becoming increasingly critical.
However, edges resulting from natural disturbances such as wildfires or insect out-
breaks, as mentioned earlier, also influence habitat conditions (Franklin et al., 2021).
The vegetation responses resulting from disturbance-related edges vary between an-
thropogenic and natural influence. For instance, Harper et al. (2015) report that edge
influence on vegetation responses of boreal forests is less extensive at cut edges when
compared to that of fire edges. However, for biomes with high levels of biomass such as

temperate and tropical forests, edge influence tends to be more considerable (Harper et



al., 2005; McWethy et al., 2009). For anthropogenic edges in temperate forests, studies
reported an increase in biomass with negligible changes to tree mortality near the edge
when compared to the adjacent interior systems (Wales, 1972; Reinmann & Hutyra,
2017). For natural edges however, temperate forests displayed increased biodiversity
and species diversity in communities located at the edge (Esseen et al., 2016; Poepperl
& Seidl, 2021; Thom et al., 2017), but responses such as an increase in dead wood
were also observed near the edge (Wales, 1972; Poepperl & Seidl, 2021). Franklin et
al. (2021) found that tropical forests tend to display the most extreme vegetation re-
sponses to anthropogenic edge creation, with observable edge influence as extensive as
500 m for some tropical systems. However, when compared to temperate and boreal
forests, this synthesis found that studies regarding naturally-induced tropical edges
are generally sparse in the literature.

Clear-cut harvesting, otherwise known as clear-cutting, is a method of timber har-
vesting involving the removal of all trees within a designated arca (Keenan & Kimmins,
1993). Keenan & Kimmins (1993) describe this method as the harvest of all trees from
the stand regardless of age, species, or size. The result of this form of harvest is the
complete removal of the forest canopy, leaving the area devoid of standing trees. The
sudden removal of an entire portion of a forest often has significant and long-lasting
effects on the adjacent ecosystem (Haddad et al., 2015). Keenan & Kimmins (1993)
found that shade-intolerant tree populations play a pioneering role in the early suc-
cessional stages post clear-cut. For shade-intolerant tree populations, the study found
that clear-cutting creates an opportunity for seedling establishment given the newly-
opened canopy. Furthermore, reduced competition at the edge promotes increased

growth rates in shade-intolerant tree populations, leading to a distinct species com-



position favouring shade-intolerant species over shade-tolerant ones. Nevertheless, as
the canopy gradually re-establishes, the study’s findings suggest that there may be a

compositional shift back to shade-tolerant species.

1.3 Edge Models

Edge models have been implemented and used by edge researchers to better un-
derstand the factors that drive edge influence on interior systems (Ries & Sisk, 2004).
Many edge models specialize in evaluating how specific factors impact edge influence.
For instance, the logistic regression models constructed by Mitchell et al. (2001) predict
windthrow damage that often occurs along clear-cut boundaries on northern Vancou-
ver Island. However, less specific models are also available to allow for flexibility in the
simulation design and consideration of influential factors. For example, the SORTIE-
ND model (Canham, n.d.), discussed in greater detail later in this thesis, offers users
the ability to implement and manipulate diverse forest types, enabling researchers to
assess a wide array of edge variations.

Menard et al. (2002) state that the implementation of edge models varies greatly,
with many such models using combinations of stochastic and deterministic processes to
define complex forest simulations under varying conditions. They describe these mod-
els to implement stochastic and deterministic processes through complex simulation
and validation procedures, capable of producing intricate and interrelated representa-
tions of forest systems. Menard et al. (2002) found that many of these models, referred
to as successional models, are derived from the JABOWA model for specific applica-
tions in different ecosystems. The JABOWA model, initially released in 1972, holds
a notable place as one of the earliest process-based individual tree models (Botkin,

1993). Since the creation of the JABOWA model, it has served as the predecessor for
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a family of over 60 variant process-based models (Ashraf et al., 2012). As summarized
by Ewers & Didham (2006), these models are capable of describing complex vegetation
responses across habitat boundaries, these responses can be verified through data col-
lection. These models become especially important when it comes to predicting and

evaluating edge influence over a significant period of time.

1.4 Research Gaps and Motivation

Franklin et al. (2021) stated that boreal forests are generally characterized by their
relatively weak extent of edge influence on vegetation. This can be attributed to the
frequent occurrence of natural disturbances and the significant heterogeneity in forest
structure and composition (Harper & Macdonald, 2002). Following this realization,
the synthesis by Franklin et al. (2021) discovered that the majority of available edge
studies on boreal forests have focused on fire, insect outbreak, and young-harvest
edges. However, there is a lack of studies on the long-term edge effects of Populus-
dominated mixed-wood boreal forests post clear-cut. Populus-dominated mixed-wood
forests are ecologically significant given their biodiversity (Anyomi et al., 2022), ecolog-
ical resilience (Anyomi et al., 2022), carbon sequestering properties (Payne, 2019), and
economic value (Richardson et al., 2007). The study conducted by Harper & Macdon-
ald (2002) on the spatial and temporal patterns of edge influence following harvesting
in Populus tremuloides-dominated boreal mixed-wood forests identified changes in un-
derstorey abundance and species composition as more significant in older edges than
that of younger edges. Given the results of this study, a temporal evaluation of pop-
ulation responses of shade-intolerant trees post-harvest may provide clearer insights
into the long-term edge effects of clear-cut harvesting. A model capable of describing

these responses could provide a method in which to further compare shade-intolerant
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tree responses for different edge and forest types.

1.5 Objectives and Significance

I investigated the use of mathematical models to bridge the research gap between
current edge studies and longitudinal edge studies. Using a forest simulator, I designed
and implemented a clear-cut on a forest stand replicating that of a Populus-dominated
mixed-wood boreal forest. I then developed mathematical models fitted to the simu-
lated data to describe the trends in the shade-intolerant tree populations over 70 years

post-harvest. My objectives were:

(i) Develop mathematical models to explain how shade-intolerant tree populations
respond to the creation of a clear-cut edge in a mixed-wood boreal forest dom-
inated by Populus species. These models captured the changes in population
over time and will range in complexity to reflect observations from the simulated

data.

(ii) Assess the effectiveness of the constructed models in fitting the data and select
the most suitable models based on their performance. Subsequently, I tested
these chosen models to evaluate their reliability, robustness, and accuracy in

making predictions.

As global fragmentation of landscapes continues to increase, understanding the
effects of edges on ecosystems is becoming increasingly important. While there has
been significant effort by edge researchers to better understand the effect of edges
on varying ecosystems, characterizing vegetation responses to edge creation poses a
unique challenge given the diverse nature of edge responses. As such, the construction

of mathematical models that can be used to describe varying systems can provide an
12



accessible medium in which to test edge effects, but also to evaluate the long-term
consequences of these effects. Furthermore, these models can provide insights into the
underlying mechanisms that drive vegetation edge responses. Overall, mathematical
models can provide us a means in which to further explore how edges influence forest

ecosystems and assist in addressing missing longitudinal edge studies.
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Chapter 2

The SORTIE-ND Forest Simulator

2.1 Introduction

The lack of longitudinal edge studies in combination with inconsistency in measured
variable vegetation responses across studies poses a challenge to constructing and
testing complex mathematical models rigorously. In the absence of empirical data,
forest simulators are often used by researchers to better understand forest dynamics
in changing environments (Moran et al., 2021). Coates et al. (2003) describe these
simulators as capable of providing researchers a means to examine complex stand
interactions, especially in the absence of relevant long-term field experiments. Forest
simulators such as JABOWA (Botkin, 1993), FORSKA (Leemans & Prentice, 1989),
ZELIG (Urban, 1990), PICUS (Lexer & Honninger, 1998), FORMIX (Huth et al.,
1998), ROPE (Shao & Shugart, 1995), and MOSAIC (Urban et al., 1999) were all
developed to better understand and explore the interactions between forest stands and
specific environmental conditions such as light, wind, and stand structure. Similar in

concept, the SORTIE-ND forest simulator is an individual-based, spatially explicit

forest successional model designed to investigate the interactions between individual
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trees and the surrounding stand environment (Canham, n.d.). SORTIE-ND, as it is
commonly known today, was adapted from the program SORTIE, which was in use
from 1996 to 2004. SORTIE-ND provides all the capabilities of SORTIE, but with an
additional emphasis on neighbourhood dynamics, hence the addition of “ND” to the
original program name.

The capabilities of the SORTIE-ND program has led to its use in a variety of appli-
cations in forest management, biodiversity conservation, and climate change research
(Canham, n.d.). The flexibility of the SORTIE-ND simulator allows it to be cali-
brated to simulate a wide range of diverse forest stands across the world (Ameztegui,
Cabon, et al., 2017; Ameztegui, Paquette, et al., 2017; Canham & Murphy, 2017). A
study conducted by Benson et al. (2022) involved a comparison of the SORTIE-ND
model with other simulators. The findings of this study found that SORTIE-ND of-
ten outperformed other available models. They further elaborated on the attributes
of the simulation, describing its individual-based implementation and how this prop-
erty allows for investigations into fine-scale spatial concerns and localized processes.
Furthermore, the simulator is spatially explicit enabling it to account for spatial di-
mensions including interactions between individual trees based on their proximity and
size. This attribute allows the model to capture effects in both localized processes and
the entire heterogeneous environment. Other favourable attributes investigated in this
review included the allowance of multiple species, simplified processes (removing the
requirements for technical complexity and difficult-to-measure physiological parame-
ters), numerous optional modules, and the fact that it is a freely available and has a
well-documented software package.

Before conducting simulated experiments, many studies using SORTTE-ND for data
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collection validate the model by comparing its outputs to observed data. For instance,
Moran et al. (2021) tested the simulator with 20 simulations using historical climate
data and found that, in almost all cases, simulated mean growth and mortality fell
within a 95% confidence interval of the observed values. Similar validation procedures
were employed by Soubeyrand et al. (2023), where the model’s performance in repro-
ducing observed species assemblages was assessed, showing consistent results within a
95% confidence interval.

Coates et al. (2023) emphasize that the requirements and expectations of a forest
simulator can influence its development, testing, and validation. SORTIE-ND, being a
parametrized model, requires calibration with observed data for accurate predictions.
Yet, excessive calibration can limit its capacity to address research questions. Com-
bining parameterized SORTTE-ND models with experimentation or empirical sampling

may offer a solution to this challenge.

2.2 Background

The Canham (n.d.) webpage (http://www.sortie-nd.org/) provides further in-
formation on the basic SORTTE-ND modelling concepts, which can be categorized as
the state data, behaviours, simulation, and the parameter file. The state data defines
the plot, the trees, and the grids. The plot is the geographical location where the
stand simulation is occurring, the trees compose the individual trees occupying the
plot, and the grids hold more specific data such as light levels and soil chemistry.
The behaviours are the processes that occur to alter the state of the simulated stand.
For SORTIE-ND, the behaviours often coincide with biological processes that are oc-
curring within the stand. The simulation runs the behaviour and state data over a

predetermined number of time-steps (each of length one year). At each time-step, a
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sequence of behaviours is completed, thereby updating or changing the individual tree
data and allowing for changes, such as growth, mortality, and recruitment, to occur
within the stand. All the state data, behaviours, and simulation times are stored in a
parameter file which allows users to easily run a variety of simulations of specific stand
structures without the need to redefine the simulation.

The behaviours of SORTIE-ND are numerous and allow for detailed control over
the simulation (Canham, n.d.). Simulation behaviours include state change, harvest
and disturbance, management, light, growth, mortality, substrate, epiphytic estab-
lishment, mortality utility, snag dynamics, dispersal, seed predation, establishment,
planting, and analysis. The state change behaviour informs model variables such as
monthly and annual climate data. Harvest and disturbance behaviours allow the user
to define disruptions in forest succession, including storm disturbances, forest har-
vesting regimes, and insect infestations. The management behaviour classifies trees
based on their likelihood to die before the next harvest and their saw log potential.
For trees in the SORTIE-ND model, light is a key resource. Light behaviours are
implemented for individual trees at each time-step to calculate the amount of light
each tree receives. The growth behaviour defines and determines the change in height
and diameter of an individual tree by calculating dimension changes using related or
independent growth equations. Mortality behaviours calculate tree death due to nat-
ural life cycle causes and stand competition. Mortality behaviours related to harvest
and disturbance regimes are not included in this behaviour. Substrate behaviours
track and determine substrate conditions at varying locations within the plot, which
is especially important for seedling establishment. Epiphytic behaviour is additionally

considered in the model, allowing epiphytes to spread and grow on individual trees
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in the plot. Model behaviours such as mortality utility and snag dynamics allow the
model to track the location of dead trees and remove decayed trees from the simu-
lation. To ensure new growth is present in the model, the dispersal, sced predation,
establishment, and planting behaviours determine how seedlings are spread and their
survival rates, as well as intentional planting. Finally, the analysis behaviour prepares
data for the final model output.

Randomness often observed in natural processes is also a consideration within the
model (Canham, n.d.). Many defined behaviours in the SORTIE-ND simulation are de-
termined stochastically. Model behaviours draw on probability distribution functions
to make decisions during each time-step. For example, a tree’s probability of mortality
due to a wind storm and seedling spatial dispersion are behaviours calculated using
probability distributions.

The simulation itself is intricate, using a set of state equations to describe be-
haviours (Canham, n.d.). These mathematical equations define the progression of the
model at each time-step. The SORTIE-ND model structure can be broken down into
various object types and relationships (Figure 2.1). The objects refer to various compo-
nents of the models including the trees, plot, grids, behaviours, etc. The SORTIE-ND
model structure also includes objects used to manage and implement the simulation
including the simulation manager, sub-managers, and outputs. Objects are connected
by either a control relationship or an interaction. Interactions act as communication
between two objects in which there is an exchange of information. Control relation-
ships act as an authoritative relationship whereby one object directs the behaviour
of another. SORTIE-ND uses a C++ core representing all of the objects and rela-

tionships required to run a simulation. The user interacts with SORTTE-ND through
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a Java interface. The Java interface is not fundamental to the overall function, but

rather provides the user with the ability to interact with model input and output.

Model Structure
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Figure 2.1: An illustration of the relationship between object types defined by the
SORTIE-ND model. Reproduced from Canham (n.d.).

2.3 Methods

The parameter file used in my simulation, provided by Bose et al. (2015), simulated
a trembling aspen (Populus tremuloides Michx)-dominated stand in eastern Canada.
The parameter file describes 7 tree species including white cedar (WC), balsam fir
(BF), mountain maple (MM), white spruce (WS), Jack pine (JP), trembling aspen

(TA), and paper birch (PB). The 200 m by 200 m plot was initially populated with
19



each tree population (Table 2.1) and are randomly dispersed across the plot. The
model was run for 200 time-steps (200 years), each time-step of length 1 year; no
disturbances were introduced to the stand until time-step 100 to allow for sufficient
growth. At time-step 100, a 40 m by 200 m clear-cut harvest was imposed on the
western edge of the plot (Figure 2.2). The model was then run for the remaining 100

time-steps uninterrupted.

Table 2.1: Populations with trees of each species randomly dispersed across the
SORTIE-ND plot.

Size Class WC | BF | MM | WS | JP | TA | PB

5.0-70cm |10.0|250] 0.0 [50.0]0.0 0.0 |75.0

12.0-140cm | 0.0 | 0.0 | 0.0 | 0.0 | 0.0] 50.0 | 0.0

14.0-16.0cm | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 150.0 | 0.0

16.0-180cm | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0

18.0-20.0cm | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 ] 150.0 | 0.0

20.0-220cm | 00 | 0.0 | 0.0 | 0.0 | 0.0 125.0| 0.0

22.0-240cm | 00 | 0.0 | 0.0 | 0.0 | 0.0| 50.0 | 0.0

24.0-260cm | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 150.0| 0.0

26.0-280cm | 00 | 0.0 | 0.0 | 0.0 | 0.0 |100.0| 0.0

28.0-300cm | 00 | 0.0 | 0.0 | 0.0 |0.0| 25.0 | 0.0

30.0-320cm | 00 | 0.0 | 0.0 | 0.0 | 0.0] 50.0 | 0.0

32.0-34.0cm | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 0.0

34.0-36.0cm | 00 | 0.0 | 0.0 | 0.0 |0.0] 25.0 | 0.0

All data directly following the clear-cut were collected and stored from the simula-
tion using the time-step tree-writer functionality. This function provides an output of

20
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Figure 2.2: The 40 m by 200 m clear-cut harvest behaviour, represented by the pink
shaded grids, that was implemented on the forest stand in the SORTTE-ND simulation
at time-step 100.

a comprehensive text file detailing the condition of each individual tree in the plot at a
specified time-step. Data provided in this text file include species type, tree mortality
status, x and y coordinate locations in the plot, tree measurements (height, diameter,
and crown radius), light availability, and how much growth had occurred. For fur-
ther data analysis, the text files were converted to Excel files. These Excel files, one
per time-step, were then collated as sheets within a master Excel file containing the
entirety of the simulation run after the introduction of the clear-cut harvest behaviour.

Each Excel sheet was read into a Python script using the function read_excel from
the Python Pandas library. The output provided by SORTIE-ND defines each tree
type as a seedling, sapling, or adult. I categorized the population data into different life
stages. Then, I separated dead and alive seedlings, saplings, and adults at a specified
distance from the harvest site edge, storing them as separate arrays. Distances were

categorized in 10 m increments by checking the z location provided for each individual
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tree in reference to the edge of the clear-cut harvest. The distance arrays included
trees in the ranges 0 m - 10 m, 10 m - 20 m, 20 m - 30 m, and so on, until 100
m into the interior forest. Additionally, I categorized the tree species populations as
defined in the simulation as either shade-tolerant or shade-intolerant. Once these data
were organized, the data for tree populations were also stored in arrays. Following
the parsing procedures, the arrays stored within the Python script were categorized
by the distance from the edge, the life stage, the dead code, and whether the species

was shade-tolerant or shade-intolerant.

2.4 Results

From the simulation, I collected 63 usable time-step files following the clear-cut
harvest that were then passed to Python for further processing. At various time-steps
throughout the simulation, the model did not produce usable data. This unusable
data were omitted from the data set. From the simulation results, it was clear that
the shade-intolerant tree populations were more abundant from 0 m - 10 m from the
edge of the harvest and had more extensive population changes after edge creation
(Figure 2.3). From 0 m - 10 m from the edge, there is an observable spike in the
shade-intolerant seedling population directly after edge creation.

However, the response of shade-tolerant species to edge creation was notably sub-
dued. Unlike shade-intolerant species, there was no increase in the seedling population
following edge creation (Figure 2.4). Morcover, the population of shade-tolerant tree
species was significantly smaller than that of the shade-intolerant species, reinforcing
the idea that the shade-tolerant species were not suitable candidates for informing
edge model dynamics. As a result, after categorizing the data produced from the

SORTIE-ND run, I decided to focus solely on the shade-intolerant tree populations
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Figure 2.3: Shade-intolerant seedling, sapling, and adult populations from 0 m - 10 m

from the edge of the harvest into the interior forest.

immediately after edge creation.
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Figure 2.4: Shade-tolerant seedling, sapling, and adult populations from Om - 10m
from the edge of the harvest into the interior forest.
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Chapter 3

Age-Structured Ordinary
Differential Equation Models of
Shade-Intolerant Tree Population

Responses to Edge Creation

3.1 Introduction

Forest edges, also known as transition zones, are crucial landscape features as they
modify the exchange of organisms, energy, and materials between adjacent habitat
patches (Ries & Sisk, 2004). In the last three decades, Franklin et al. (2021) reported
significant efforts have been devoted to understanding the global impact of edges on
habitat conditions. The studies evaluated in this synthesis used various measured
forest structure and composition response variables to assess environmental changes
associated with edge creation. However, edge responses are system-specific and can

vary given edge orientation, patch contrast, and temporal patterning (Ries & Sisk,
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2004). As global fragmentation of forests increases, studying the influence of edges
on diverse forest types poses limitations for empirical edge studies. In this regard,
mathematical models offer an alternative approach to capture and describe these com-
plex systems under different conditions, without requiring physical experimentation
(Morozov, 2013).

Mathematical models are used in forest edge research to gain a deeper understand-
ing of how edge dynamics impact the adjacent interior ecosystem (Ries & Sisk, 2004).
These models offer the ability to describe intricate, non-linear responses observed em-
pirically in the data (Ewers & Didham, 2006). Forest modelling, particularly in the
context of edge dynamics, encompasses both stochastic and deterministic approaches
(Menard et al., 2002). Vanclay (2006) defines deterministic models by their use of
differential equations or Markov chains and their consideration of physical, biologi-
cal, and climatic factors to define edge structure and composition. In contrast, they
characterize stochastic models by their ability to accommodate the inherent unpre-
dictability frequently encountered in ecological processes. Using both deterministic
and stochastic processes, Vanclay (2006) describes agent-based spatially explicit suc-
cession models, such as SORTTE-ND, as capable of simulating complex forest scenarios
under varying environmental stressors.

Generally, a model consists of two key components: model mechanics and model
parameters (Read et al., 2020). Model mechanics describe the overall dynamics of
a system, while model parameters enable fine-tuning to specific scenarios (Schroers,
2011; Read et al., 2020). By incorporating data from which the parameters may
be estimated, models can be customized to accurately represent a system and yield

predictions about its future state (Evans et al., 2013).
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In this chapter, I investigate mathematical models for the representation of the
SORTIE-ND simulated data, associated with shade-intolerant trees, that were dis-
cussed in Chapter 2. For this, I consider systems of age-structured ordinary differ-
ential equation (ODE) models. ODE models are used to describe the rate of change
of an observed variable with respect to an independent variable, most often, time.
ODE models can exhibit varying characteristics by incorporating either deterministic
or stochastic processes, or a blend of both, depending on the specific problem. In this
case, | define the ODE model using deterministic processes, where the model solutions
are predictable given the initial conditions and governing equations Schroers (2011).
This modelling approach captures distinct stages of tree growth (seedlings, saplings,
and adults) and how tree populations are influenced by a clear-cut edge over time.

Here, I present a series of mathematical models constructed to describe the dy-
namics of a shade-intolerant tree population located at the edge of a clear-cut harvest.

My objectives were to:

(i) Construct mathematical models capable of describing the dynamics of age-structured,
shade-intolerant tree populations near a clear-cut forest edge. These models vary
in parameter complexity to assess the necessary level of detail for describing the

data, guided by trends observed in the simulated data from Chapter 2.

(ii) Within the model cohort, I will compare the models and identify the best mod-
els based on performance. Additionally, I conduct sensitivity analyses on these
top-performing models to assess their robustness and enhance confidence in pre-

dictions.

(iii) Explore the capabilities of these models to perform at varying distances from

the edge. As my main research goal was to mathematically describe how shade-
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intolerant tree populations respond to edge influence, I was particularly interested

in exploring this objective.

3.2 Methods

3.2.1 Model Development and Testing

Designing and validating age-structured ordinary differential equation (ODE) mod-
els entails a systematic process encompassing four key stages (Figure 3.1). First, ODE
models undergo construction, involving the introduction of new parameters and coef-
ficients to accurately represent observed behaviours in the data. Subsequently, model
parameters and coefficients are optimized using a fitting procedure. Following this,
models are compared within the cohort to identify the top performers. Lastly, the
most promising models are subjected to sensitivity analyses, yielding additional in-

sights into their reliability and robustness.

Model
il Model Fitting . Sensitivity

Analyses

Development Comparison

Figure 3.1: Description of the methodological process to construct and test the age-
structured ODE models.

3.2.1.1 Model Development

To construct age-structured ODE models, I initially drew inspiration from the classic
compartmental Susceptible, Infected, Recovered (SIR) model proposed by Kermack
et al. (1997). This model describes a population where individuals are classified into

three sub-populations given their disease status. I modified the model’s structure to
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accommodate an age-structured compartmental framework specifically designed for
shade-intolerant tree populations located at the forest edge. In this modified model
structure, trees are compartmentalized and transitioned between stages based on their

current status as seedlings, saplings, or adult trees (Figure 3.2). In addition to modi-

BSs

U1S; U2S U3S3

Figure 3.2: Vizualization of the adapted SIR model to the seedling (.S1), sapling (.S2),
and adult (S3) compartmental structure. Here, 3 represents the seedling establishment
rate, ¢; and co represent the seedling and sapling maturation rates, and py, ps, and
13 represent the seedling, sapling, and adult mortality rates.

fying the compartmental structure, I also considered the parameters of the SIR model.
These parameters govern population changes through birth, death, and recovery rates,
as well as interactions between populations that allow susceptible individuals to be-
come infected. I adopted a similar approach to define mortality, establishment, and
maturation rates for shade-intolerant tree populations, thereby defining the movement
of individuals within the age-structured compartments. To enhance the consistency
between simulated data and model solution curves, I introduced systematic generaliza-
tions for certain parameters. These parameters were generalized to be time-dependent

functions, utilizing unitless coefficients to enhance flexibility in the fitting process. By

incorporating non-linear time-dependent parameter functions where suitable, I aimed
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to better depict the population trends evident in the data. The resulting models
formed a progression of nested structures, wherein each subsequent model retained
the same underlying structural framework as its predecessors, but featured varying

degrees of parameter complexity.
3.2.1.2 Model Fitting

Once conceptualized, models parameters were fitted to the data using a parameter op-
timization routine available within the Python scripting language (see Section 3.3.2).
This iterative routine ensured an optimal fit for each model by continuously refining
parameter values until no further improvements could be achieved. To maintain realis-
tic parameter values, estimates for parameter values were bounded between 0 and oo.
The iterative adjustment process for model parameters continued until the difference
between the ODE model solution curves and the simulated data could not be further
minimized. To enhance the accuracy of this routine, a secondary Python function was
developed to apply the routine a predefined number of times. During each iteration,
the parameter values were compared with the previously stored values. If the current
parameter values resulted in a superior fit compared to the previous best-fit values, the
function updated the best performing parameter values and used them as the initial

estimate for the next iteration of the routine.
3.2.1.3 Model Comparison

The fitted models were compared using the Akaike Information Criterion (AIC) (Akaike,
1998), a commonly used metric for comparing nested models (Wagenmakers & Farrell,
2004). The AIC considers the number of parameters present in the model, k, the num-
ber of data points, n, and the log of the likelihood, L (the likelihood of the model given

the data) (Eq. 3.1). The likelihood, L, quantifies how well the model reproduces the
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observed data, reflecting its accuracy in describing the underlying system’s processes
(Casella & Berger, 2002). However, calculating the likelihood can be challenging in
many modelling cases (Rossi et al., 2020). As an alternative, the mean-squared error
of the residuals (the difference observed between the data and the predicted model val-
ues), obtained by dividing the total sum of squared errors (SSE) by the total number
of data points, n, can be used instead (Eq. 3.2) (Rossi et al., 2020). It is important
to note that this approach assumes identical and independently sampled errors from

a normal distribution for both the model and the data (Rossi et al., 2020).

AIC = —2-In(L)+2-k (3.1)

AIC =n-In(SSE/n)+2-k (3.2)

I employed eq. 3.2 in order to calculate AIC values for my models.

AIC values were calculated for each model by comparing the residuals, i.e., the
differences, between the solution curves and the simulated data points, and using these
to calculate the SSE. Models were then compared using their calculated AIC score by
calculating the difference between their score and the lowest AIC score of the model
cohort. Since the magnitudes of the calculated model AIC values are not informative,
the relative probabilities of the AIC scores were used to compare the models. For the
1th model, the corresponding relative probability, RelProb;, is given by the equation:

ICin—AIC;

RelProb; = e ™4 (3.3)

where AIC,,;, is the lowest AIC score of the model cohort and AIC; is the AIC score of
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the 7th model. Models with relative probability scores less than 0.05 can be confidently

rejected (Burnham & Anderson, 2003).
3.2.1.4 Sensitivity Analyses

A series of sensitivity analyses were conducted to assess the resilience of non-rejected
models. These analyses explored the models’ sensitivity to data noise, parameter vari-
ations, and structural changes. Overall, the investigations aimed to test the robustness
and reliability of model predictions.

To assess the sensitivity of the models to noise added to the data set, I introduced
noisy perturbations to the data. Specifically, for each classification of tree (seedling,
sapling, and adult), noise was drawn from a normal distribution with a mean of 0. The
variance was calculated based on the standard deviation between the model solution
curves and the simulated data, separately for each population group. To create the
noisy dataset, the data for each population group were perturbed by incorporating
the population-specific noise realization. Each perturbed data was assessed to ensure
the data remained non-negative. This process was repeated for every data point in
the set. After generating the noisy data, model parameters were then refit to the per-
turbed data following the same parameter fitting procedure described earlier. Once
the optimization process was complete, the new fitted parameters were saved. To
ensure statistical robustness, I repeated this procedure 1000 times to obtain a suf-
ficiently large sample size. The results of this test further inform confidence in the
model predictions (Saltelli et al., 2008).

Critical parameters or coefficients are terms that have the most significant impact
on model output. In order to determine which parameters or coefficients were critical,
I employed the one-at-a-time (OAT) sensitivity test method (Razavi & Gupta, 2015).
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The OAT method isolates each parameter or coefficient value, providing additional
insights into critical parameters/coefficients, the reliability of model predictions, and
any uncertainties present in the model (Saltelli et al., 2008). For the OAT method,
all except one of the best-fit model parameter and coefficient values are held constant
and the remaining parameter or coefficient is slightly perturbed by 5% increments
relative to the parameter estimates, ranging from —25% to +25%. Using the adjusted
parameter or coefficient value, I generated new solution curves for the model. The
sensitivity of a parameter or coefficient is determined based on the observed magnitude
of difference between the baseline best-fit model solution curves and the perturbed
model solution curves.

To evaluate model sensitivity under structural changes, I systematically modi-
fied the structure of a given ODE model in order to evaluate its performance under
changing conditions. Model structure encompasses the arrangement, connectivity, and
components that define the model’s functional behaviour (Iooss & Lemaitre, 2015). 1
examined how changes in parameter equation structure impacted model performance.
In the simplest model, I considered all of the parameters to be constants. In my
most complex models, some of the parameters were generalized to time-dependent
expressions involving several coefficients (see equations 3.6a, 3.6b, 3.7a, and 3.7b).
I systematically removed each parameter/coefficient that appeared in the parameter
equations and re-ran the model predictions. This involved setting the removed pa-
rameters/coefficients to either 0 or 1. I removed isolated parameters or coefficients by
setting their values to 0. For parameters or coefficients that had a multiplicative rela-
tionship with other parameters/coefficients, I removed them by setting their values to

1. This approach allowed me to isolate and assess the influence of specific parameters
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or coefficients without affecting the others, especially when coupled with other param-
eters/coefficients. This analysis was performed for each parameter/coefficient in the
model. The remaining model parameters/coefficients were then refit to the simulated
data using the same fitting procedure outlined previously. To evaluate the model’s
response to the removal of a parameter/coefficient, I compared the AIC results of
the simplified models to the original model’s AIC results. This simplification process
identifies model redundancies and unnecessary complexity (Iooss & Lemaitre, 2015).
Finally, I tested how the models perform at varying distances from the edge of the
clear-cut. By sorting the SORTTE-ND data in 10 m increments, I created data sets of
seedling, sapling and adult shade-intolerant trees from 0 m - 10 m, 10 m - 20 m, 20 m
- 30 m, etc. Using the same parameter fitting procedure, I refit the model parameters
to the new subsets of data. Using the best fit parameters, I produced model solution

curves and evaluated how well the model did at describing the data.

3.2.2 Solving Fitted ODE Models in Python

Model parameters and coefficients were fitted to the simulated SORTIE-ND data
using two built-in functions available in the Python SciPy library (SciPy, n.d.). The
least_squares function, found within the optimize subclass of the SciPy library, requires
initial parameter/coefficient estimates along with a function that returns a calculated
residual vector that represents the difference between the ODE model solution curve
and the simulated data. The least_squares function uses the sum of squared errors of
the residual vector to adjust the parameter/coefficient values until the residual vector
is minimized. The function used to calculate the residual vector requires the use of an
ODE solver to numerically calculate the solution to the ODE model for a given set of

parameter /coefficient estimates. The ODE solver used, odeint, was accessed from the
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SciPy.Integrate library. I now provide a brief overview of the algorithms employed by

the ODE solver and the least squares optimization function.
3.2.2.1 Numerical Solutions to ODEs

The odeint function solves a system of ODEs using LSODA from the FORTRAN
library odepack (scipy.integrate.odeint — SciPy v1.9.8 Manual, n.d.). LSODA is a
further advancement of the FORTRAN subroutine package, LSODE, the Livermore
Solver for Ordinary Differential Equations (Radhakrishnan & Hindmarsh, 1993). An
ODE solver uses a numerical method in order to take a sequence of time-steps from
the initial time to the final time. At the end of each time-step, an approximate solu-
tion point is completed. Solving a system of ODEs efficiently and accurately depends
on the initial identification the stiffness of the ODE (Petzold, 1983). Stiffness can be
generally characterized by rapid changes in the ODE solution, requiring small time-
steps to ensure accuracy (Hindmarsh, 1992; Stroud, 1974). If an ODE is not stiff,
it is said to be nonstiff. Nonstiff problems are often solved using explicit methods,
such as Runge-Kutta and Adams methods (Hindmarsh, 1992). Stiff ODEs however,
require a more nuanced solution approach as standard explicit methods applied to stiff
problems lead to large computation times and possibly a loss in accuracy (Shampine
& Gear, 1976). The reason for the extensive increase in computation time is due to
the excessively small steps an explicit method has to take to solve a stiff ODE (Rad-
hakrishnan & Hindmarsh, 1993). For stiff ODES, the LSODE solver uses a family
of backward differentiation formulas (BDF) which can solve stiff problems without
having to take very small time-steps (Gear, 1971). The LSODE package also includes
a family of implicit Adams methods, which are useful for solving nonstiff problems
(Radhakrishnan & Hindmarsh, 1993). Conveniently, the LSODA variant of LSODE
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switches automatically between Adams and BDF methods using a stiffness detection
algorithm developed by Petzold (1983) (Hindmarsh, 1992). This allows for optimal so-
lution times for problems that change their stiffness over the time domain (Hindmarsh,
1992).

Assume that the ODE system to be solved has the general form, %)7(1‘) = f(t,Y (1)),
with initial conditions, }7(750) = Y,. The methods in the LSODE package generate
approximate solutions, ?n, to the ODEs at discrete time points ¢,, (n = 1,2,...);
hence Y, ~ Y (t,) (Radhakrishnan & Hindmarsh, 1993). The solutions are approxi-
mated for each time point by using previous approximate solutions, ?n_j, that have
already been computed for ¢,_;, j = (1,2,...) and previous function evaluations
ﬁl_j = f(tn_j,?n_j), (j = 1,2,...) (Radhakrishnan & Hindmarsh, 1993). The so-
lutions are advanced at each time point ¢,, using methods (called multistep methods)

having the general form,
K1 K2
Yn = Z ann—j — hn Z /gjfn—j (34)
j=1 §=0

where the coefficients «; and f; and the integers K; and K, are defined to give either
an Adams method or a BDF. When ; # 0, the multistep method is said to be implicit.
This means that the formula computing Y’;L uses the unknown value f; = ]? (t, }7”)

In this case, a special numerical algorithm (e.g., Newtons method) must be used to

compute the Y, value.
3.2.2.2 Parameter and Coefficient Optimization
The least_squares function uses the Levenberg-Marquardt algorithm which employs

both the Gauss-Newton method and the Levenberg method (Ranganathan, 2004).
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The algorithm begins by using the Gauss-Newton method to solve the nonlinear
least squares optimization problem (Levenberg, 1944). However, the Gauss-Newton
method can be ill-suited for certain fitting applications, producing non-optimal param-
eter/coefficient fittings (Lourakis, 2005). In these cases, the algorithm will switch to
the Levenberg method, which is an optimization method that deals with these specific
fitting challenges (Levenberg, 1944).

Once parameter/coefficient values are estimated, the algorithm evaluates the mag-
nitude of change between the previous estimates and the new estimates (Yuan, 1999).
The algorithm uses the Trust Region Reflective method to control the size of the
adjustments in the parameter/coefficient values during the optimization process (Op-
timization and root finding (scipy.optimize) — SciPy v1.8.0 Manual, n.d.). The algo-
rithm employs a control on the size of the change in the parameter/coefficient values
called a trust region (Branch et al., 1999). If the changes in the parameter/coefficient
values fall inside the trust region, the changes are accepted and the algorithm moves
to the next step in the process (Yuan, 1999). However, if some of the changes fall
outside the trust region, the changes are rejected and the computation is adapted to

reduce the parameter/coefficient adjustment size (Branch et al., 1999).

3.3 ODE Model Results: Development and Testing

3.3.1 Model Development

Model 1 retains the same framework as the original SIR model described ear-
lier, except for the renaming of compartments to seedling (S;), sapling (Ss), and
adult (53) (Figure 3.2). The parameters of Model 1, assumed to be constant for this

model, encompass the processes governing the establishment of shade-intolerant trees
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as seedlings, their maturation into saplings and then adults, and their mortality (Table

3.1). Model 1 is described as follows:

dSh

P BS3 — 151 — S, (3.5a)
ds
d—t2 = 151 — 252 — 1259, (3.5b)
das
d—t3 = 252 — p3Ss. (3.5¢)

Table 3.1: parameter definitions and units for Model 1.

Parameter Definition Units
B Seedling establishment rate | (Seedlings/Adults)/year
¢ Seedling maturation rate | (Saplings/Seedlings)/year
I Seedling mortality rate year ™!
2 Sapling maturation rate (Adults/Saplings)/year
Lo Sapling mortality rate year~!
143 Adult mortality rate year—1

Using the SORTIE-ND simulated population data and the fitting procedure out-
lined in Section 3.2.1, I fit the parameters of Model 1 to the data (Figure 3.3). The
analysis of the fitted results revealed distinct patterns in the data that were not ade-
quately captured by the current structure of Model 1.

Upon evaluating the simulated data, I noticed a pronounced decline in the popula-
tion of seedlings and saplings, particularly during the initial time periods. This decline

in seedlings can be observed from time 1 to roughly time 6, while for saplings, it is
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Figure 3.3: Solution curves of Model 1 solved using the best-fit parameters obtained via
the curve-fitting procedures described in 3.2.1. The plot depicts the seedling, sapling,
and adult model solutions at time t. Individual data points represent the seedling,
sapling, and adult populations at time t from the SORTIE-ND simulated data set.

noticeable from time 3 to approximately time 10. Consequently, it became evident
that the mortality rate for younger seedlings and saplings was notably higher com-
pared to their more mature counterparts (Figure 3.3). To address this, I introduced
new time-dependent mortality parameters, expressed as a negative exponential func-
tion plus a constant term commonly found in survivorship curves (Kimmins, 2003). In
this context, an exponential function has the functionality to characterize the accel-
erated decline observed in the seedling and sapling population during the early stages
of the simulation. It also effectively captures the subsequent, more gradual decline in

population. The time-dependent mortality rates, p; and puso, are defined as follows:

pr=f-e 9 +h, (3.6a)

po =1i-e 7t + k. (3.6b)
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Here, f, g, h, 7, j, and k represent unitless coefficients that provide flexibility for the
representation of the mortality parameters, pq and ps, and ¢ denotes time. These gen-
cralized mortality parameters effectively capture the varying magnitude of population
mortality, particularly noticeable in the seedling and sapling populations. Further-
more, the expressions for yq and y in (3.6a) and (3.6b) allow the higher mortality in

the younger seedling and sapling populations to diminish with time (Figure 3.4).
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Figure 3.4: A general visualization of the trend of equations 3.6a and 3.6b. This plot
gives a general depiction of how the mortality rate term, u, changes over time.

For the maturation rates of seedlings and saplings, I observed from the SORTIE-
ND data at approximately time 3, a significant number of seedlings transitioned into
saplings. A similar trend was noticed for saplings transitioning into adults at roughly
time 15. To capture this trend, I altered the maturation parameters. I employed
generalized time-dependent sigmoidal functions for the maturation rates, ¢; and ¢y, of
the seedling and sapling populations. The properties of a sigmoidal function allows
the maturation rate to quickly increase at the average time of maturation as observed

in the data. Following this increase, the function will then level off. This general form
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of this function is expressed in the following equations:

(6]

c1 = 41 n e—’Y(t_tcl) + (5, (37&)
g

2 = T (3.7b)

Here, «, v, 0, 0, 1, and ( are arbitrary unitless coeflicients, and t., and t., are coeffi-
cients representing the average maturation time for seedlings and saplings, respectively.
By utilizing these generalized maturation rates, I was able to generalize the model to
facilitate a substantial increase in the rate of maturation around the average matura-
tion time. This enabled a substantial transfer of seedlings to the sapling compartment

and saplings to the adult compartment consistent with what can be observed in the

SORTIE-ND data (Figure 3.5).
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Figure 3.5: A general visualization of the trend of the equations 3.7a and 3.7b. This
plot gives a general depiction of how the maturation terms, ¢, changes over time.

Based on these generalized parameters, I developed seven additional ODE models

(Table 3.2). As each model is a more complex modification of Model 1, these are
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considered to be nested models. Using these eight models, I explored how changes to

the parameters altered the fitted results.

Table 3.2: Models and their associated updated parameters.

Model

Updated Terms

1

&1

M1, C1

C1, C2

M1, 12, C1

M1, C1, C2

M1, M2, C1, C2
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3.3.2 Model Fitting Results

Model 1 served as my initial foundation for developing all other models. However,
I observed that Model 1 did not accurately fit the observed data (Figure 3.6 A). While
this model approximately captured the trend of the seedling and sapling populations, it
deviated from the observed data after approximately 20 years. Additionally, the adult
solution curve suggested no change in the adult population throughout the simulation,
which contradicts the observed data.

Model 2 produced nearly identical fitting results to that of Model 1 (Figure 3.6
B). Recall, Model 2 included the introduction of the updated mortality term for the
seedling population (Table 3.2). Model 2 solution curves approximately described the
population trends; however, these still do not agree very well with the data. Similar
to Model 1, Model 2 suggested no change in the adult population for the duration of
the simulation, which did not accurately reflect the observed trends in the data. The
results from this model suggested that the addition of the time-dependent mortality
parameter for the seedling class alone was not sufficient to accurately describe the
trends in the data.

Model 3 improved upon Model 1 by employing the updated seedling maturation
rate (Table 3.2). However, the solution curves from Model 3 did a poor job of captur-
ing all of the trends observed in the data across all populations (Figure 3.6 C). The
solution curves suggested that <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>