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Abstract

Learning Disentangled Representations of Point Clouds via Alpha

Complexes for 3D Shape Classification

By

Altaf M. Agowun

Three-dimensional computer vision tasks have gained much attention in recent times,

both in academic and industrial research. One of the key tasks of 3D computer vision

is object classification. Various approaches based on the representations (e.g., point

clouds, voxels, multi-view images and graphs) of the objects have been put forward

for object classification. Recently, few works have used graph neural network for point

cloud classification and have achieved promising results. In this thesis, we explore the

use of a dual-stream graph neural network combining the alpha complexes constructed

on the feature and non-feature regions of the point cloud object. The disentangled

representation of the point cloud into feature and non-feature regions is achieved

through a gradient structure analysis procedure and a Corner and Edge detection

technique. Our experiments on ModelNet40 benchmark dataset indicate that the

proposed graph-based method achieves higher or comparable accuracy to other state-

of-the-art methods.
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Chapter 1

Introduction

Three-dimensional, (3D) object classification is the task of predicting the class of a 3D

object. In recent years, we have seen a lot of promising results in object classification

within two-dimensional images [8–10], however the environment we interact with is

in three-dimensional and 2D data lack important information such as depth which is

especially important when looking at real-world applications of such research such as

autonomous driving, robotics or Augmented Reality. With the development of afford-

able 3D sensors (LiDAR sensors, RGBD-sensors, etc.) together with the availability of

public datasets (ShapeNet [1], ScanObjectNN [11], etc.) research within 3D learning

tasks such as object classification, object segmentation, object detection, etc. have

been gaining a lot of interest. In this thesis, we focuses on the task of point cloud

classification using GNN, more specifically we explore the use of Geometric Disen-

tangled representation and alpha complex graph construction to retrieve information

from point cloud data which we then feed into a dual-stream GNN to achieve the task

of object classification.

1.1 Object Classification

Object classification is a deep learning process of determining the class or category to

which an object stored in a file format belongs to. This is a task that is found in 2D

1



1.1. Object Classification

file format [8–10], where the pixels information are used to classify the image as well

as in 3D file format such as the case of point clouds or mesh objects. Let us look at

an example in Figure 1.1, that shows the classes determined from point cloud input

data.
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Figure 1.1: Example object classification on ModelNet40 [1]. We used PointVisualizaition
[2] for visualizing these point clouds.
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1.2. Point Cloud

1.2 Point Cloud

Point cloud is a set of 3D points in space which represents an object, environment

or surface. Each point pi is stored using Cartesian coordinates (x, y, z). So, a point

cloud dataset P containing N number of points can be denoted as P = {pi|i =

1, 2, 3, ..N}, pi ∈ R3. Optionally, points pi can contain extra attributes such as colour

or intensity. These points are obtained by technologies such as laser scanning, ter-

restrial scanning or photogrammetry, which capture the position and coordinates of

each point relative to a reference system. Point cloud have been gaining popularity

in many fields such as engineering, construction and robotics due to their ability to

capture three-dimensional data easily with high accuracy and relatively smaller file

size compared to other popular methods such as polygonal meshes.

Deep learning on 3D point cloud however does come with some challenges. This is due

to a multitude of conditions and limitations of the current methods and technologies

for point cloud gathering such as Lidar (Light Detection and Ranging). Below are

some characteristics of point cloud data that makes extracting information from them

challenging:

• Irregularity: Point cloud data does not have a consistent number of points per

unit volume, leading to areas with dense number of points and other with sparse

number of points. There is also occlusion that can happen due to obstruction in

relation to the capturing device leading to surfaces not being sampled (Figure

1.2 (a)).

• Unstructured: Point cloud data only store the coordinate and optionally color

of the surface that the point is representing, Thus information on how each

individual point is connected to the neighboring points is missing. We cannot

tell which set of points are on the same surface (Figure 1.2 (b)).

• Unordered: Compared to the grid arrangement of 2D images where pixels

are stored in a known order, in point clouds data the points are stored in an

unordered manner thus we do not have a known order to the points. This is par-

ticularly challenging for convolution-based methods since convolution requires

3



1.3. Disentangled Representation

a known structured distribution of the inputs (Figure 1.2 (c)).

(a) (b) (c)

Figure 1.2: Challenges of point cloud data [3]. (a) Irregular: Sparse and dense regions. (b)
Unstructured; No grid; each point is independent and the distance between neighboring
points is not fixed. (c) Unordered: As a set, point clouds are invariant to permutation.

1.3 Disentangled Representation

The concept of disentangled representation is that data can be split into different

regions based on some criteria and is closely linked with human reasoning (Bengio,

Courville, and Vincent 2012 [12]). For example, Taihong et al. [13] separate facial

images based on attributes such as smiling and not smiling and pair images of the

opposite attributes to learn the particular attribute. In point cloud understanding,

Xu et al. [4] proposed GDANet which uses Geometry-Disentangle Module. It uses a

Laplacian operator on an adjacency matrix created in the feature space to create a

high-pass filter. Using the high pass filter they calculate the l2-norm of each points.

Points with larger l2-norm represents points with higher variations to their neighbors.

Thus, they ordered the points in descending order based on the l2-norm before re-

trieving the top and bottom M points to represent the sharp-variation component

and gentle-variation component (see Figure 1.3).
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1.4. Graph

Figure 1.3: GDANet [4] geometry-disentangled point cloud objects

1.4 Graph

A graph is a pair G = (V,E) where V is a set of vertices or nodes, and E is a

set of edges and are represented by pairs (v1, v2) where v1 and v2 represents two

vertices/nodes part of the set V . Graphs can be undirected or directed, in undirected

graphs the edges (v1, v2) can be seen as being a connection both from v1 to v2 and

from v2 to v1. See Figure 1.4 (a) below for a toy example of an undirected graph.

However, in directed graph, the edges (v1, v2) represent a connection from a source

node v1 to a target node v2.

0

2

1

(a)

0 1, 2

1 0, 2

2 0, 1

(b)

0 1 1

1 0 1

1 1 0

(c)

Figure 1.4: (a) Toy Graph example (b) adjacency list (c) adjacency matrix

Graphs are stored in different ways; more noticeably as adjacency list and adjacency

matrix.
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1.5. Graph Neural Network (GNN)

• adjacency list: In this approach, the graph is stored as a collection of un-

ordered lists. The collection can be implemented as either an ordered list or

a hashmap, where each list consists of vertices/nodes and represents the ver-

tices/nodes to which the index or key vertex/node has an edge with (see figure

1.4 (b)).

• adjacency matrix: In this approach the graph is stored in a matrix of size

n × n where n is the number of vertices/nodes in the graph (see Figure 1.4

(c)). Matrices are sometimes preferred due to the availability of efficient al-

gorithm dealing with matrix operations. An unweighted and undirected graph

represented by the adjacency matrix A can be defined as follows:

Aij =

 1 : if there is an edge between vi and vj i.e. (vi, vj) ∈ E,

0 : otherwise

1.5 Graph Neural Network (GNN)

GNN is a special type of neural network that operates on graph-structured data. In

general, nodes of the graphs will contain features and the edges will represent rela-

tions between the nodes and may also contain features of their own. GNN have been

successfully used to perform both for node-level [14–16] as well as graph-level classifi-

cation [17–19]. There are different frameworks to GNN [20] such as Recurrent GNNs

(RecGNNs) [21], Convolution GNNs (ConvGNNs) [4, 22, 23], Graph Autoencoders

(GAEs) [24] and Spatial-temporal GNNs (STGNNs) [25]. We focus on ConvGNN

framework that defines graph convolutions based on a node’s spatial relations. Thus

for each node we convolve its features with its neighbors’ features to derive its updated

features (see Figure 1.5). From another perspective it uses the idea of message-passing

where information is propagated among the nodes along the edges of their neighbors.

By applying multiple layers of graph convolution, each nodes attends to an increas-

ingly greater region of the graph. Finally, we apply an aggregation function on the

whole graph to extract graph-level classification.
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1.6. Contributions

h2
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h'1

(a) (b) (c) (d)

Figure 1.5: Graph Convolution pipeline for a node, h1. (a) shows a toy graph example
with h1 as the central node and hi neighbors. (b) concatenation of h1 features with each
neighbors features. (c) the resulting features after applying convolution on the features
from (b). (d) the resulting new features h′

1 for node h1 after applying an aggregation
function on the features from (c).

1.6 Contributions

In this thesis, we analyze the use of a dual-stream GNN for point cloud classification.

Our input are the gentle and sharp variation regions of an alpha complex graph rep-

resentation of the point cloud. The sharp and gentle variation regions are obtained by

applying either Gradient Structure Tensor or Corner and Edge geometric disentangled

method. Our specific contributions can be summarized as follows:

• We propose the use of Gradient Structure Tensor, GST and Corner and Edge,

CE to score the points based on their geometric space within the point cloud

object, which we then use to split the object into gentle and sharp variation

regions.

• We used alpha complex graph-based representation of the geometric split point

cloud to extract the structural information of the point cloud object.

• We use a dual-stream GNN to combine the features extracted from the two

alpha complex graph-based representations of the input point cloud for point

cloud classification.

• We perform thorough experimental study on ModelNet40 [1] dataset to analyse

the performance of the proposed network for point cloud classification.
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1.7. Organization

1.7 Organization

This thesis is organized as follows:

• Chapter 1 (Introduction) introduces the studied problem, explains the key

challenges, motivation and contributions.

• Chapter 2 (Related Work) provides a summary of other related studies that

proposes methods and approaches for 3D point cloud object classification.

• Chapter 3 (Method) covers the graph generation and neural network pro-

posed in this thesis for point cloud classification.

• Chapter 4 (Experimental Results) demonstrates the results of the proposed

method for point cloud classification on ModelNet40 [1] dataset.

• Chapter 5 (Conclusion and Future Work) discuss the conclusion we drew

from the experimental results and proposes the future directions we saw to

improve the proposed model.
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Chapter 2

Related Work

2.1 3D Object Classification

3D Object Classification consist of determining the category (e.g: chair, table, car,

...) to which an object belongs. With the advancement of hardware and availability

of publicly datasets from industries and universities such as ModelNet40 [1], Model-

Net10 [1], ModelNet-C [26], Sydney Urban Objects [27], ScanNet [28], ScanObjectNN

[11], interest in academic research within point cloud classification has gained much

interest. The following sections will cover different methods that have been developed

in recent years.

2.2 Multi-view-based Methods

Multi-view-based methods takes advantage of the advancement made in 2D CNNs by

projecting the 3D shape into multiple views (see Figure 2.1), then extracting view-wise

features before aggregating them into a single global descriptor.

9



2.2. Multi-view-based Methods

Figure 2.1: Multi-view projection of a 3D point cloud object into 2D images. Each 2D
image represents the same object viewed from a different angle. [3]

The pioneering work for this approach was proposed in 2015 by Su et al. [29] the

Multi-View Convolutional Neural Network (MVCNN). In this method a set of known

viewpoints are always used to extract the different views of the object. The features

extracted from the different views are then max-pooled into a single global descriptor

for the object. Multi-resolution filtering extension, which captures information at

multiple scales, was introduced by Qi et al. [30]; besides, the authors used data

augmentation for better generalization to improve on MVCNN [29]. RotationNet [31]

improves on MVCNN [29] by considering the viewpoints labels as latent variables

which are learned in an unsupervised manner during training, thus it only uses a

subset of the views which is further helpful in practical scenarios when only partial

views of the object is available.

10



2.3. Volumetric-based Methods

2.3 Volumetric-based Methods

These methods usually try to emulate the structured behaviour found in images by

applying methods to voxelize the points into 3D grids (see Figure 2.2), then applying

3D Convolution Neural Network (CNN) on the volumetric representation for shape

classification.

Figure 2.2: Voxelized 3D Shapes from ModelNet10 as presented in OctNet paper [5]

Maturana et al. [32] introduced the VoxNet which voxelize the input point cloud

into I × J × K voxels, then depending on the occupancy model used each voxel is

represented as a single feature which is then preprocessed before being feed into a

CNN for classification. Wu et al. [1] proposed a convolutional deep belief-based 3D

ShapeNets to learn the distribution of points from various 3D shapes. The issue with

such methods was the computation and memory cost thus Gernot et al. [5] proposed

the OctNet which partitioned the point cloud using a hybrid grid-octree structure (see

Figure 2.2), which represents the scene with several shallow octrees along a regular

grid. The structure of the octree is encoded efficiently using a bit representation

and the feature vector of each voxel is indexed by simple arithmetic. Le et al. [33]
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2.4. Point-based Methods

proposed PointGrid which normalizes the point cloud to unit boxes, then employs

Point Quantization- a sampling method that ensures each voxel has exactly K points.

Thus they are able to share 3D Convolution Kernel to create feature maps for each

voxel.

2.4 Point-based Methods

Point-based methods processes the points directly, without converting them into any

structures such as in Volumetric-based Methods or any other form such as in Multi-

view-based Methods. The pioneering work for this approach was proposed in 2017

by Qi et al PointNet [34] which used several MLP layers and extracted the global

features with a max-pooling layer.

PointNet [34] learned features from each points independently, thus losing any local

structure information between points. To alleviate such issues, Qi et al. [35] pro-

posed a hierarchical network PointNet++ to capture fine geometric structures from

the neighborhood of each point. Zhao et al. proposed PointWeb [36] which uti-

lizes the context of the local neighborhood to improve point features using Adaptive

Feature Adjustment (AFA). Point Attention Transformers (PATs) [37] uses Abso-

lute and Relative Position Embedding (ARPE) module to represent each point into

a high-level representation, then the features pass through layers of Group Shuffle

Attention (GSA) block and down-sampling blocks, either Furthest Point Sampling

(FPS) or Gumbel Subset Sampling (GSS) before being connected to an MLP for

classification.

2.5 Graph-based Methods

Graph-based approaches extract information from the point cloud by representing

it using graph structures. In general, the points represent the nodes in the graph

and edges are created between the nodes based on an algorithm, then using a graph

convolution neural network the features from the nodes are learned to achieve tasks

such as classification.

12



2.6. Transformer-based Methods

Klokov et al. [38] proposed the use of kd-tree, which is a special kind of graph. The

kd-tree is built in a top-down manner on the point clouds to create a feed-forward

kd-network with learnable parameters in each layer. The computation performed in

the kd-network is in a bottom-up fashion. The leaves represent the input points; two

nearest-neighbor (left and right) nodes are used to compute their parent node using the

shared parameters of a weight matrix and bias. Wang et al. [22] proposed DGCNN,

which uses edge convolution, edgeConv. In edgeConv, for each point the k-nearest

points are gathered, then the coordinates of the central node and the difference be-

tween the coordinates of the neighbors and the central node are concatenated. These

features then goes through a layer of convolution to extract the new features for the

points/nodes. Between each previously detailed edgeConv layer, the k-nearest neigh-

bor (k-NN) graph is reconstructed using the new features, After the last edgeConv

layer the features goes through a global max-pooling operation similar to PointNet

[34] finally classification is achieved by applying MLP over the extracted features. In

2021 Wang et al. [39] proposed the use of deep normalized Reeb graph convolution.

This paper used the generalised Reeb graph construction on point clouds, together

with k-NN graph to extract information from the point cloud for classification. Xu et

al. [4] proposed the GDANet, which improved on DGCNN [22] by using Geometry-

Disentangle Module which splits the object features into gentle-variation and sharp-

variation regions, which are learned independently in an unsupervised manner by the

network. Srivastava et al. [23] proposed GeomGCNN, which builds on DGCNN [22]

proposing two main improvements, to augment the vertex representations with im-

portant local geometric information of the points and an improvement to constructing

k-NN graph taking into consideration sampling frequency difference, these improve-

ments allowed them to create the model which at the time of writing this thesis holds

the best accuracy on ModelNet40 [1] classification task.

2.6 Transformer-based Methods

Following unprecedented success in natural language processing (NLP), Transformers

have been gaining much attention lately. This increase in interest and success at-
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2.6. Transformer-based Methods

tributed to Transformers’ impressive ability to model long-range dependencies have

not only made it a very compelling option for NLP but also for computer vision

tasks. In general, Transformers work by creating tokens from subpart of the inputs

and finding the relationship between them to make sense of the overall input.

Figure 2.3: Point2Vec [6] pipeline

For example, in NLP, the words are embedded and the relationship between the

tokens in the phrase allow the model to understand the context and meaning of

the phrase. Dosovitskiy et al. [40] created a 2D image classification network using

transformers by splitting the image into k×k parts, then embedded them together with

a positional embedding to classify the image. In 2022, Yu et al. [41] proposed Point-

BERT inspired by the success of BERT [42] (Bidirectional Encoder Representations

from Transformers) a language representation model. They pre-trained the point

cloud Transformers by dividing the point cloud into several local point patches and

using a point cloud Tokenizer with a discrete Variational AutoEncoder (dVAE) they

obtained tokens from the patches. Then they randomly masked out some patches

of the input point clouds and fed them into the backbone Transformers. The pre-

training objective was to recover the original point tokens at the masked locations

under the supervision of point tokens obtained by the Tokenizer. Using these learned

tokens together with a classification head made up of a MLP they were able to achieve
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classification task in point cloud. Zeid et al. [6] proposed the Point2Vec which was

inspired by the ability of extending Data2Vec [43] for 3D point clouds. In Data2Vec,

they proposed a student–teacher pre-training framework for the creation of tokens.

Point2Vec extended that framework for 3D point cloud and found that one of the issues

that it faced was that the leakage of positional information revealed the overall object

shape to the student even under heavy masking, which hampered data2Vec ability in

learning strong representations for point clouds. They fixed the issue by adopting an

approach inspired by MAE [44]. They only fed the non-masked embeddings to the

student. A separate decoder, implemented as a shallow Transformer encoder, took

the output of the student and the previously held-back masked embeddings as input

and predicted the training targets. Figure 2.3 shows the stages involved in Point2Vec

architecture.

2.7 Summary

The current direction in point cloud processing focuses on machine learning. Thus

it has to deal with the issues that all the current machine learning approaches face.

Among these drawbacks are memory space and inference time. Both these issues are

usually interrelated; a deep neural network will have a lot of weights consuming large

memory space and a lot of computations are required to learn from the inputs as they

pass through the network thus resulting in huge processing time.

Transformers which have been gaining a lot of interest in computer vision generally

results in high accuracy. However, Transformers tends to be large in size and thus

incurs heavy computational time. On the other hand, we can prioritise inference speed

by using point-based learning but the accuracy achieved using point cloud directly

tends to be lower. Graph-based methods tends to have a good trade off between

accuracy and speed. Thus we chose to use a graph-based method. We attempt to

create a graph that would reduce the number of inputs (edges in the case of a graph)

such that it would prioritize those that would provide more important details. Thus

we would be able to maintain high accuracy while reducing the number of edges and

therefore memory space.
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Chapter 3

Method

This chapter presents different components of our model’s pipeline. The first stage

in our pipeline deals with the graph construction that takes input point cloud and

generates an alpha complex (section 3.1). The next stage focuses on splitting the

object into regions of gentle and sharp variations (section 3.2). This is followed by

feature extraction and learning on the disentangled alpha complex via graph neural

network (section 3.3). See Figure 3.1 for an outline of our model.

Graph Construc�on
Geometric 

Disentenglement
Dual-stream

Model ch
ai

r

Input (point cloud) Alpha Complex

Gradient Structure Tensor
OR

Corner and Edge

Disentangled Representa�on

Figure 3.1: Pipeline of our model.
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3.1. Graph Construction

3.1 Graph Construction

Let P = {pi|i = 1, 2, 3, ...N}, pi ∈ RF where F is the set of features associated to

each points F = {fi|i = 1, 2, 3, ...n}. In point clouds, the features are usually the

coordinates of the points followed by additional features such as normal, reflectance

or RGB-color. In the case of ModelNet40 [1] dataset, points are provided with their

spatial coordinates. Thus each point pi can be denoted as pi = (xi, yi, zi) where

xi, yi, zi are the corresponding axis coordinate of the point in Euclidean space.

By considering each point in the point cloud as a vertex, we construct an alpha

complex graph over the whole point cloud. Since alpha complex is a subcomplex

of the Delaunay graph over a set of points we first need to define the Delaunay

graph.

To facilitate the understanding of Delaunay graph, we present the explanation over

a set of 2D points, and then we use that intuition to expand into higher dimensions

as detailed by Maur et al. [45]. Delaunay graph over a set of points in 2D space

can be defined as the triangulation of the points such that no point lies within the

circumcircle (see Figure 3.2) of a triangle. See Figure 3.3 for example of Delaunay

graph on points in 2D space.

Figure 3.2: Circumcircle of a triangle.
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3.1. Graph Construction

(a) Delaunay graph. (b) Non Delaunay graph.

Figure 3.3: Illustration of Delaunay and non-Delaunay graph. (a) the triangulation satisfy
the condition of Delaunay graph. (b) the triangulation does not satisfy the conditions
since the point in red lies within the circumcircle in red of another triangle.

Using the graph obtained by applying Delaunay triangulation, we can apply the alpha

complex filtration in which we remove all edges that have an Euclidean distance

greater than the α-value. See Algorithm 1 for the pseudo code we used to implement

Alpha Complex graph for a point cloud, p with α-value, α. (see Figure 3.4 below for

alpha complex example from Delaunay triangulation).

(a) (b) (c)
Figure 3.4: Creating alpha complex from Delaunay Triangulation. (a) Delaunay Triangu-
lation, (b) red edges greater than the α-value, (c) Alpha complex
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3.1. Graph Construction

Algorithm 1 Alpha Complex

1: procedure Alpha Complex(p, α)
2: Edges← Delaunay(p)
3: for edge in Edges do
4: if ∥edge∥ > α then
5: Remove edge from Edges
6: end if
7: end for
8: return Edges
9: end procedure

We decided to use alpha complex in order to create graphs that models the shape of

the object. As we can see the Delaunay graph construction (Figure 3.5 (a)) creates

an object that contains too many edges and do not reflect the underlying shape of the

object. Using alpha complex filtration we are able to remove the extra edges (Figure

3.5 (b)), however we need to choose the right α-value in order to remove the correct

amount of edges to reflect the shape of the object as best as we can. (Figure 3.5 (c)

shows the effect of choosing an α-value that is too small, resulting in too many edges

being removed).
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3.2. Geometric Disentangled Representation

(a) (b) (c)

Figure 3.5: (a) Delaunay Graph (b) Alpha complex α-value=0.04 (c) Alpha complex α-
value=0.02.

3.2 Geometric Disentangled Representation

Geometric Disentangled Representation for point cloud can be thought of as splitting

the object into regions of gentle and sharp-variations similar to that proposed in

GDANet [4]. Regions of gentle-variations refer to the regions with flat surfaces, while

regions of sharp-variations refer to corner and edges. In this thesis, we considered
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3.2. Geometric Disentangled Representation

two methods for deriving geometric disentangled representation based on the same

intuitive idea as in GDANet [4], namely a simplified implementation of Gradient

Structure Tensor proposed by Chen et al. [46] (we will refer to this method as GST

throughout this thesis) and a simplified version of the corner and edge detection

method (we will refer to this method as CE throughout this thesis) proposed by

Ahmed et al. [7]. The following subsections covers the simplified implementations

of these two methods. In both methods we derive a continuous score which we call

confidence similar to how it is used in GST [46]. After calculating the confidence

score for all the points within the point cloud, we sort them in descending order and

pick the top M points as points belonging to the sharp-variation region and bottom

M points as points belonging to the gentle-variation regions.

3.2.1 Gradient Structure Tensor (GST)

In our work the confidence score Ci of each point pi is calculated based on the neigh-

boring points within a sphere centered at pi. To improve robustness of our classifi-

cation, spheres of various radii are used to gather the neighboring points of pi. For

each neighboring sphere, Principal Component Analysis (PCA) [47] is applied to the

neighboring points in order to obtain the variance of the three main components,

λi
0, λ

i
1, λ

i
2 where λi

0 ≤ λi
1 ≤ λi

2. Using these components the two geometric properties

namely fitting quality Cf and sampling uniformity Cs are calculated.

Fitting quality Cf represents the fitting quality of the local tangent plane at point pi,

calculated using Equation 3.1.

Ci
f = λi

0/(λ
i
0 + λi

1 + λi
2) (3.1)

If point pi and its local neighbors can perfectly fit the local tangent plane, the value

of the fitting quality measure Ci
f of pi approaches 0. In contrast, if the neighbors of

point pi are inhomogeneous, they are most probably distributed on edges, corners and

any extrusions/intrusions of the shape. In this case, the value of Ci
f of pi tends to be

1.
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3.2. Geometric Disentangled Representation

Sampling uniformity Cs represents the local sampling uniformity, as quantified by

Equation 3.2.

Ci
s = λi

1/λ
i
2 (3.2)

If point pi and its local neighbors are distributed linearly, the value of Cs of pi ap-

proaches 0; if uniformly distributed, Cs tends to be 1; therefore, this measure is

effective in detecting outer boundaries of the shape.

These two geometric properties are then combined to get the complete confidence

score Ci ∈ [0, 1] of point pi (Equation 3.3).

Ci = 1− 1

n

n∑
j=1

(1− 3Ci
f ) · Ci

s (3.3)

where n represents the number of neighboring spheres used. Figure 3.6 shows the

color map and region split between points that fall under gentle-variation region and

sharp-variation region. We prefer the use of the parameters within the (b) column as

it deals better with differences in density across the point cloud relative to parameters

in column (a), while also being able to score finer details relative to parameters in

column (c).
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3.2. Geometric Disentangled Representation

(a) (b) (c)

Figure 3.6: A few example showing the classification of points into regions of gentle and
sharp variations using GST method.Top row of each section represents the color map of
the confidence score for each point with the normalised color map range under the color
map. Bottom row shows the region to which the point belongs to, blue for gentle-variation
and red for sharp-variation. (a) sphere radius=[0.1, 0.15, 0.2] (b) sphere radius=[0.15,
0.2, 0.25] (c) sphere radius=[0.2, 0.25, 0.3].
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3.2. Geometric Disentangled Representation

3.2.2 Corner and Edge (CE)

This method is originally proposed in the paper by Ahmed et al. [7] and is aimed

at detecting corners and edges for robotic welding. In this thesis, we utilise the

continuous nature of the simple yet effective portion of their method to derive a way

to create a similar idea as confidence as described in GST [46].

The algorithm proposed in the CE [7] paper is based on an intuitive reasoning that

the mean of a patch of points taken from a specific query point should be closer to

the query point if it is on a flat surface and further if it is at an edge or corner(see

Figure 3.7).

Figure 3.7: Bunny point cloud example from Ahmed et al. [7] paper. Points in green
refers to the k-nn points based on the query point in red. The point in blue within the
magnified circle refers to the resulting point derived from calculating the mean of the k-nn
points

To calculate the confidence score Ci for each query point piq ∈ P where P refers to

the set of all points in the point cloud. We calculate the Euclidean distance between

the mean point pim obtained by taking the mean of the k-nn points from the query

point piq (Equation 3.4) and the query point piq itself (Equation 3.5).

24



3.2. Geometric Disentangled Representation

pim =
1

N

∑
j∈Ni

pj (3.4)

N refers to the number of points within k-nn, and Ni refers to the neighbors of point

pi.

Ci = d(pim, p
i
q) = ∥pim − piq∥ (3.5)

Figure 3.8 shows the color map and region split between points that falls under gentle-

variation region and sharp-variation region. It can be observed that the results of Fig.

3.8 (b) deals better with differences in density across the point cloud relative to Fig.

3.8 (a), while also being able to score finer details relative to Fig. 3.8 (c).
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3.2. Geometric Disentangled Representation

(a) (b) (c)

Figure 3.8: A few example showing the classification of points into regions of gentle and
sharp variations using CE method. Top row of each section represents the color map of
the confidence score for each point with the normalised color map range under the color
map. Bottom row shows the region to which the point belongs to, blue for gentle-variation
and red for sharp-variation. (a) k-nn=32 (b) k-nn=64 (c) k-nn=128.
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3.3. Graph Neural Network for Classification

3.3 Graph Neural Network for Classification

In this thesis, we use a Graph Attention Network (GAT) for our downstream task,

i.e., point cloud classification based on the graph representation of the point cloud

object. GAT was originally proposed by veličković et al. [15] and later improved by

brody et al. [48]. Below, we describe the mathematical underpinnings of GATv2 [48]

layer for a specific node vi with features hi.

First, we concatenate (Equation 3.6) the features of the query node hi with that of

its neighbor, hj ∈ Ni, where Ni represents the set of neighbor nodes of node vi, for

the first layer where the node features are the coordinates of the points. We used

hj = hj − hi in our work to untangle the positional and structural information:

hi||hj (3.6)

Then we multiply (Equation 3.7) the concatenated features with a learnable weight

matrix W ∈ RF′×F where F is the number of the feature in hi||hj and F ′ is the

number of feature for the output dimension of that layer:

W · [hi||hj] (3.7)

We then apply an activation function σ to the result (Equation 3.8), the most common

σ used here is LeakyReLU :

σ(W · [hi||hj]) (3.8)

In case of Graph Convolution Neural Network, the results from the above equation

is aggregated (using max pooling, summation, average, etc..). However, in GATv2

it is multiplied by the corresponding attention mechanism coefficient αk
ij (Equation

3.9). The attention mechanism coefficient is learned using a feed forward layer with

a Softmax activation function.
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3.3. Graph Neural Network for Classification

αij · σ(W · [hi||hj]) (3.9)

In order to get the features for the node hi after that layer, we aggregate the features

of the neighbors as in Equation 3.10.

∑
j∈Ni

αij · σ(W · [hi||hj]) (3.10)

We also apply multi-head attention with K heads, which means that we follow the

Equation 3.10 K times and concatenate the results to obtain the new feature for hi

as presented in Equation 3.11.

h′
i =

Kn

k=1

(∑
j∈Ni

αk
ij · σ(Wk · [hi||hj])

)
(3.11)

3.3.1 Single-Stream Architecture

In this section, we present the proposed architecture for our single-stream model using

GATv2 layers (see Figure 3.9). The structure of the proposed model is inspired by

DGCNN [22].

Spatial transform module (bottom diagram in Figure 3.9 taken from DGCNN [22])

used to deal with the discrepancies in rigid transformations such as rotation, transla-

tion and scaling of the input point clouds.

Following the spatial transform module, we used a set of four GATv2 layers with out-

put dimensions 64, 64, 64 and 128. The outputs of these layers are then concatenated

and goes through a layer of convolution with output dimension 1024. Finally, we use

a multi-layer perceptron, MLP (dimensions 512, 256, C) where C is the number of

categories we are classifying.
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Figure 3.9: Single-stream GNN architecture. Spatial transform module diagram.

3.3.2 Dual-Stream Architecture

In our dual-stream architecture (see Figure 3.10), we start by ordering the features

of the points based on their confidence score obtained by using either GST (section

3.2.1) or CE (section 3.2.2) as discussed in the corresponding sections. We then split

the set of point features into two equal parts, that we feed into separate GNN layers.

The results of these layers are then stacked together to be fed into a single stream

GNN layer, we repeat this process along our model before using a 2D Convolution

layer with skip connections to previous layers, followed by MLPs which ends with the

classification output layer.

The splitting of the GNN layer into two allows the model to train the weights to

better attend or fit the type of features most common to gentle and sharp variation

regions separately. It is then combined to ensure that the model does not over fit the

features and learns the global features of the whole shape.
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Figure 3.10: Dual-stream GNN architecture.
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3.4 Model Training Configurations

For both models presented in the previous sections (Section 3.3.1 and 3.3.2) we used

the following configurations during the training phase. We used softmax cross entropy

for our loss function, Adam [49] as our optimizer with an exponential decay learning

rate initially at 0.001 with a decay rate of 0.7 every 200000 steps. We trained for 400

epochs with a batch size of 32.
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Chapter 4

Experimental Results

4.1 Implementation and Training

We implemented our models based on the code available from DGCNN GitHub page

[50]. We used Python 3.7.7, Numpy [51], Scikit Learn [52], Scipy [53] and Tensorflow

[54]. We also used Open3d [55] and PointVisualizaiton library [2] for point cloud

visualization and Matplotlib [56] for graph plots throughout this thesis. We trained

our model on Compute Canada’s Béluga cluster and our models made use of a single

NVIDIA Tesla V100-SXM2 GPU with 16GB memory.

4.2 Dataset

We evaluated the classification accuracy of our models on ModelNet40 [1]. Model-

net40 benchmark dataset contains 12,311 pre-aligned shapes from 40 categories, which

are split into 9,843 (80%) for training and 2,468 (20%) for testing. A sample of Mod-

elNet40 point cloud objects and corresponding labels are shown in Figure 1.1.
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4.3 Results

In this section, we compare the performance of our model with other state-of-the-art

3D object classification models and provide a more in-depth analysis of our model’s

inner layers and performance.

4.3.1 Comparison

We measure and compare the performance of our model based on two commonly

used metrics in object classification namely overall accuracy and mean accuracy

abbreviated to OA and mAcc respectively.

• Overall Accuracy (OA): OA refers to the overall probability of our model

classifying all the objects it is tested on. In other words, it is the probability of

our model being successful if used in a setting where there is an equal chance of

having to classify each category an equal amount of time. Equation 4.1, shows

the formula used to calculate overall accuracy.

OA =
Number of Correct Predictions

Total Number of Items
(4.1)

• Mean Accuracy (mAcc): This metric quantifies the average probability of our

model classifying each individual category. In other words, it is the probability

of our model being successful if used in a setting where there is a specific set

of categories to be classified. Equation 4.2, shows the formula used to calculate

overall accuracy.

mAcc =

∑
Accuracy for Each Class Prediction

Number of Classes
(4.2)

These two metrics are good descriptors of the performance of object classification

models and by comparing them we can tell if a model is doing particularly bad in

specific categories, i.e if the difference between OA and mAcc is large we can tell

that there must be specific categories that are some what outliers and performing
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4.3. Results

considerably worst relative to the other categories.

Method OA mAcc

PointNet [34] 89.2 86.0

PointNet++ [35] 90.7 -

DGCNN [22] 92.9 90.2

GDANet [4] 93.8 -

Kd-Net [38] 90.6 86.3

OctNet [5] 86.5 83.8

DNRG [39] 89.9 87.1

GeomGCNN [23] 95.9 93.1

Ours (alpha) 88.3 84.2

Ours (alpha + knn) 91.5 88.1

Ours (knn) 90.7 87.1

Ours (Dynamic knn) 90.6 87.5

Table 4.1: Classification accuracy on ModelNet40 [1]. All accuracies in %. The results
for our models are taken from the dual-stream models presented in Section 4.4.2 for Ours
(alpha) and Section 4.4.5 for the other graph constructions.

Table 4.1 shows the comparison between our proposed approach and other existing

methods in classifying the 40 classes in the ModelNet40 [1] dataset. The accuracies

of other methods reported in Table 4.1 are extracted from the respective papers. Our

graph based method performs better than some other graph based methods such as

OctNet [5] and Kd-Net [38] as well as other point-based methods such as PointNet

[34] and PointNet++ [35]. The proposed model did not however perform better than

newer state-of-the-art models such as DGCNN [22], GDANet [4] and the current best

method as far as we are aware at time of writing this thesis GeomGCNN [23]. We

suspect that our lower accuracy might have to do with the need to have a larger

number of edges to describe the local feature in greater details since we can see from

section 4.4.2 that we are able to gain considerable improvements by having extra

edges that describes the local feature at each point. We are also prone to difference
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in point density a key issue that GeomGCNN [23] proposed a solution for in order to

get better accuracy.

4.3.2 Model Analysis

In this section, we take a more in depth look at what our model is doing within the

hidden layers by analyzing the feature spaces within the inner layers of our dual-stream

model, presented in Figure 4.1 and we analyze how well our model is distinguishing

between the different classes by taking a look at the classwise accuracies presented in

Table 4.2 and at the t-SNE plot presented in Figure 4.2.
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4.3. Results

Figure 4.1: Feature spaces generated after the different layers of the model. Feature
attention based on the red point.

Figure. 4.1 visualizes the feature attention between the point in red and the relative

neighboring points. Going from left to right i.e from layer 1 to layer 4 of our model,

the feature being attended to based on the red point become more coarse and focuses

on the feature itself such as the corner or edge in case of the chair or the rounded

surface of the airplane nose in case of the airplane. We can see especially in the case

of the chair that the geometric disentanglement that split the object into two in the

second layer made the model focus on the outer surface of the chair more than the

flat surface in relation to the query point in red.
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Class Acc Class Acc Class Acc Class Acc

airplane 100 cup 65 laptop 100 sofa 97

bathtub 92 curtain 85 mantel 94.9 stairs 85

bed 99 desk 93 monitor 98 stool 80

bench 75 door 95 night stand 79.1 table 81

bookshelf 97 dresser 84.9 person 90 tent 95

bottle 97 flower pot 10 piano 93.9 toilet 97

bowl 100 glass box 97 plant 82 tv stand 88

car 99 guitar 99 radio 60 vase 84.8

chair 98 keyboard 100 range hood 94 wardrobe 70

cone 95 lamp 95 sink 95 xbox 85

Table 4.2: Classwise accuracies for alpha+knn model. All accuracies in %

We note from Table 4.2 that our model performs generally good in most classes,

however, classes such as flower pot, cup and radio poses an issue to our model.

Figure 4.2: t-SNE distribution of model accuracies.
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From Figure 4.2 we can see how some classes such as bed, airplane and guitar are

clearly clustered away from other classes. However, some classes especially those at

the center of the plot are not clustered very well such as night stand and dresser which

have very similar shapes for a lot of their instances.

4.4 Ablation Studies

4.4.1 Disentangled Representation Method

The proposed model orders the points based on two different methods GST and CE,

see Section 3.2 for details. In this ablation study, we look at the accuracies and

average inference times of these methods across all point clouds. (We used an α-value

of 0.04, as it reflects the number of edges that visually makes the graph represent the

underlying shape, see Section 4.4.4 for different α-values).

Method Time (s) OA mAcc

GST 0.887 88.15 83.60

CE 0.110 88.31 84.25

Table 4.3: Time (s) is the average time taken in seconds for the sorting of the points
using the disentangled representation methods and classification accuracies for GST and
CE for geometric disentangled representation on ModelNet40 [1].

From Table 4.3 we can see that CE disentangled representation method is approxi-

mately 8 times faster than GST method. Moreover CE method performs slightly bet-

ter than GST method for both overall accuracy and mean accuracy, thus we choose

to move forward with CE method for the following ablation studies.

4.4.2 Neighbor fallback

Since alpha complex does not create a fix number of neighbors for each point/node

(see Figure 4.3 for the number of edges per node), there is a need to add a padding
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to the input features. We used the following approaches to add padding to the input

features:

• self-loop: In this method we create self loop with the central node. If we

consider a point cloud with N number of nodes then for each node vi, i ∈ N we

create edge (vi, vi) for each missing neighbor node required to get to the selected

number of neighbors.

• knn: In this method we create an edge between the central node and k nearest

neighbor, where k is equal to the number of missing node required to get to the

selected number of neighbors.

Padding Time (s)
Single Dual

OA mAcc OA mAcc

self loop 0.407 88.23 83.56 88.31 84.25

knn 0.778 89.49 85.61 90.95 87.71

Table 4.4: Classification accuracies achieved by using the different padding methods on
ModelNet40 [1]. Single refers to the model presented in Section 3.3.1 and Dual represents
the model presented in Section 3.3.2. Time (s) refers to the average time taken in seconds
to build the graphs for each sample.
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Figure 4.3: Number of edges for each node. α-value=0.04.

As we can see from Table 4.4 that knn padding increases the amount of time required

to build the graph. However, the use of knn padding improves the accuracy of our

model by a considerable amount. Thus, we will use knn padding as the padding

method in the rest of the ablation studies.

4.4.3 Number of Neighbors

Since our model is based on DGCNN [22] which uses tensors that need to be of a

fix size in order to learn the corresponding weights and biases, we needed to decide

on a fixed number of neighbors for each node. Table 4.6 shows an ablation study on

the different number of neighbors. As we can see in Table 4.6 with 16 nodes using

the dual-stream model presented in Section 3.3.2, we were able to achieve the highest

overall accuracy.
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#NN
Single Dual

OA mAcc OA mAcc

10 90.42 85.52 90.75 87.15

16 90.38 86.98 91.03 87.68

20 90.26 86.36 90.95 87.71

Table 4.5: Classification accuracies of using 10, 16 and 20 neighbors on ModelNet40
[1]. Single refers to the model presented in Section 3.3.1 and Dual represents the model
presented in Section 3.3.2.

4.4.4 α-value

In this ablation study we experiment with different α-values to see their effects on the

model.

α-value
Single Dual

OA mAcc OA mAcc

0.04 88.56 84.30 91.56 88.14

0.05 90.38 86.98 91.03 87.68

2.0 (Delaunay) 89.04 84.22 89.08 85.07

Table 4.6: Classification accuracies of using α-value 0.04, 0.05 and 2.0 (Delaunay) on
ModelNet40 [1]. Single refers to the model presented in Section 3.3.1 and Dual represents
the model presented in Section 3.3.2.

From Table 4.6, we can see that our dual-stream model performs the best with an

α-value of 0.04.

4.4.5 Graph Construction

Based on the previous ablation studies, we can see that using knn as our padding

method improves the performance of our model (see section 4.4.2). So in this ablation
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study we look at the performance of using knn alone as well as Dynamic knn1 with

graph convolution layers (DGCNN) and GATv2 layers [48] (DGGAN).

Graph
Single Dual

OA mAcc OA mAcc

alpha + knn 88.56 84.30 91.56 88.14

knn 90.63 86.83 90.79 87.19

DGGAN2 90.95 88.19 90.22 86.76

DGCNN3 91.48 88.57 90.63 87.58

Table 4.7: Classification accuracies achieved by using the different graph construction
method on ModelNet40 [1]. The row alpha + knn refers to alpha graph construction
with knn padding (see section 4.4.2). knn refers to the use of knn graph construction
alone. Single refers to the model presented in Section 3.3.1 and Dual represents the
model presented in Section 3.3.2.

Table 4.7 indicates that splitting the input into sharp and gentle region did not im-

prove the accuracy when using dynamic graph construction. This could be due to the

latent spaces within the subsequent layers not having any intuitive shape that would

benefit from being learned separately. In case of non dynamic graphs, geometric dis-

entangled representation was able to split the shape into different intuitive regions

which helped the model to achieve higher accuracies.

4.4.6 Inference Time

In this ablation study we compare the average inference time of our dual-stream model

with the different graph constructions and that of other models.

1Dynamic knn as presented in DGCNN [22], it is the construction of the knn graph after each
layer instead of relying on the previous layer’s knn graph structure.

2DGCNN [22] model with GATv2 layers [48] instead of the original graph convolution layers.
3Accuracy for single stream model is obtained from running the TensorFlow implementation of

DGCNN from their GitHub page [50].
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Methods Time (ms) OA

PointNet [34] 16.6 89.2

PointNet++ [35] 163.2 90.7

DGCNN [22] 27.2 92.9

Ours (alpha) 552.7 88.3

Ours (alpha + knn) 901.9 91.5

Ours (knn) 119.1 90.7

Ours (Dynamic knn) 138 90.6

Table 4.8: Time (ms) is the average inference time in milliseconds taken by each model
per sample.

Note the average inference time presented for the other methods in Table 4.8 were

taken from DGCNN [22] and they used a different GPU from us. They used two

NVIDIA TITAN X GPUs while in our case we used a single NVIDIA Tesla V100-

SXM2 GPU.

From Table 4.8, we can see that our alpha complex graph based models (alpha and

alpha + knn) took drastically more time than the rest. However, we note that most

of the time in all the models were spent carrying out the geometric disentangled rep-

resentation and graph construction. Since we used Corner and Edge as our geometric

disentangled representation we expect based on Table 4.3 that on average around

110ms of our methods’ time were spent in that stage. The graph construction stage

took the greatest amount of time see Table 4.4 for the average time taken for this

stage in case of alpha and alpha + knn. As for knn and Dynamic knn the graph

construction is built into the Dual-stream model itself.
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Chapter 5

Conclusion and Future Work

In this study, we used alpha complex representation of the point cloud together with

a dual-stream model using geometric disentangled representation for 3D object clas-

sification. We analyzed and compared the performance of our proposed model on

ModelNet40 [1] benchmark dataset, and showed that our model performed close to

DGCNN [22] and better than some other state-of-the-art models. However, the accu-

racy of our approach comes at a cost due to the heavy computational cost of building

an alpha complex representation of the data (see Table 4.4 for the average time for

building the alpha complex graph for an object).

5.1 Conclusion

In conclusion, we can see that our method performed better than some models as

illustrated in Table 4.1. Although it performed better than some model it did not

perform better than DGCNN [22] and also have a higher computational cost. A

possible reason why our method’s accuracy is lower could be the reduced number of

edges. Although our initial intuition was that a more coarse and simplified graph

representation would provide a better representation of the 3D object, it turns out

that having greater number of nearest neighbors is generally better as can be seen

from Table 4.4 which implies that using knn was better than simply using self loop
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and from Table 4.6 where the accuracy generally went up as the number of nearest

neighbor increased. Moreover, the computational cost of building alpha complex

representation might be an issue when implemented in real-life applications such as

autonomous driving.

5.2 Future Work

In this work, we did not explore the full potential of alpha complex graph. Since alpha

complex is based on Delaunay graph we can extract additional information such as

the area of the faces and volume of the tetrahedra that remain after alpha complex

filtration. Moreover, we used a fixed α-value for all objects while some object might

require a different or even varying α-value to get a more accurate graph representation

of the object. We could also explore the use of this method in other 3D computer vision

tasks such as segmentation and 3D object detection as well as testing the performance

of our model on other datasets such as ScanObjectNN [11] and ModelNet40-C [26].

Additionally, we could explore more optimised alpha complex construction methods

to address the high inference time of our model.
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