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Abstract 1 

Abstract 

Non-Radial Oscillations in Rotating Intermediate Mass Stars 

by Catherine Lovekin 

In this work I investigate the influence of rotation on pulsation frequencies in upper main sequence 
stars. I use 2D stellar structure models and a 2D linear adiabatic pulsation code to calculate pulsation 
frequencies for both uniformly and differentially rotating 10 M 0 ZAMS models. Current techniques 
for these calculations often assume that the pulsation mode can be modelled using a single spherical 
harmonic and that the rotation rate is slow enough for second order perturbation theory approaches 
to be valid. These techniques require the rotation rate to be small enough to be considered a 
small linear perturbation. Using my 2D models, I am able to determine independent limits on 
the rotation rates for which these techniques are valid. These limits depend strongly on the mode 
and property in question, and range from 50-400 km s~ . In general, uniform rotation decreases 
both the frequencies and the large separations, but produces increases in the small separations. 
In differentially rotating models, the frequencies may either increase or decrease, depending on the 
mode. Since these variations move in opposite directions, it may be possible to constrain the interior 
angular momentum distribution from stellar pulsations. Unfortunately, the differences are small, and 
the observational challenges may be insurmountable. Finally, I investigate how the distortion in the 
shape of the eigenfunction influences photometric mode identification techniques. Increasing rotation 
increases the variation in photometric mode identification as a function of inclination, with the result 
that it may be impossible to rule out certain modes. 

September 8, 2008 
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Chapter 1 

Introduction 

The basic equations governing stellar structure have been understood by astronomers for nearly 100 

years. Initially, these equations were studied using models which could be solved semi-analytically, 

such as polytropes and the Cowling approximation. These remained the primary tools for the 

study of stellar structure until the development of computers, which made it possible to solve the 

equations of stellar structure numerically. A more in depth understanding of stellar structure and 

evolution came rapidly, and very soon the entire life cycle of a star was understood. By 1967, 

nearly uninterrupted sequences of models covered stellar evolution from the early stages of pre-main 

sequence contraction through and somewhat beyond shell helium burning, thanks to the work of 

many researchers (see review in Iben, 1967). Pre-main sequence evolution was studied extensively 

by Henyey et al. (1955); Hayashi (1961) and Iben (1965). Main sequence evolution came to be 

understood through the work of, among others, Kushwaha (1957) and Kippenhahn et al. (1965) 

for intermediate mass stars (5-7M©) and Schwarzschild & Harm (1958) for very massive stars. 

Evolutionary tracks for lower mass stars were carried out by Hoyle & Schwarzschild (1955) and Iben 

& Ehrman (1962). Astronomers soon turned to objects with non-solar metallicity, and the first 

investigations of Population II stars (Demarque, 1960, 1962; Demarque et al., 1972) came soon after 

the basic structure and evolution of models at solar metallicity began to be understood. 

As a result of this work, the structure and evolution of non-rotating spherical stars was well 

understood for all phases of evolution, and for a wide range of masses and metallicities. Using 

computers, integrating the stellar structure equations for a spherically symmetric, non-rotating star 

is straightforward. In a spherically symmetric star the equations of stellar structure can be written 

in terms of a single independent variable, most commonly the mass interior to a shell of radius r 

(M,.). Of course, many details remain to be explored, and many challenges remain (eg., convection, 
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opacities, equation of state). 

1.1 Modelling Rotating Stars 

Once the basic structure and evolution of spherically symmetric models were reasonably well under

stood, a new challenge was to understand the physics of rotating stars to the same level of detail. 

At first glance, this seems easy, because the only new equation introduced to solve for the structure 

is Poisson's equation for the gravitational potential. In practice, the same physics can behave in 

different ways (eg., rotational mixing, meridional circulation), and the numerics of the problem be

come much more difficult. The problem is no longer spherically symmetric, and must be modelled 

in (at least) two dimensions. Initial attempts at modelling rotating stars treated rotation as a first 

order perturbation to one dimensional models. For example, Sweet & Roy (1953) calculated first 

order perturbations to produce a rotating Cowling model. This approach gave some useful answers 

for slowly rotating models, but breaks down when the ratio of the centrifugal to gravitational forces 

exceeds 0.29, as the perturbations become too large to be valid under a first order approximation 

(Sweet & Roy, 1953). Monaghan & Roxburgh (1965) investigated more rapid rotation using poly-

tropes, integrating inward and outward and matching the solutions at some interface. Although a 

first order approximation is valid in the interior, the outer regions must be treated differently. This 

allowed them to investigate a wider range of rotation. Although this was important ground work, 

to truly understand the structure of rotating stars, more realistic structure models are required. 

More realistic stellar models of uniformly rotating stars were first used by Roxburgh et al. (1965). 

These models divide the star into two regions, as shown in Figure 1.1. The majority of the mass of 

the star is concentrated in a spherical central region. This is surrounded by a low density region, in 

which the gravitational potential is primarily due to the inner region, and appears as a point mass 

(Roche) potential. Once the potential is known, the equations of stellar structure can be solved as 

for a spherically symmetric star. This creates a model which can be treated as though it is one 

dimensional, and is suitable for slowly rotating stars. In principle, this method can be used for 

conservative rotation laws, but works best for uniformly rotating stars. Conservative rotation laws 
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require that the rotation rate can be written as the gradient of a potential. One can show (eg. 

Tassoul, 2000) that this means that Q, the angular rotation rate, is a function only of distance from 

the rotation axis (VJ = rsinO, where r is the radius and 6 is the polar angle.) These models were 

subsequently improved to include more realistic opacities and improved nuclear generation rates 

(Faulkner et al, 1968). This type of model was also used by Sackaman & Anand (1969), this time 

including convection and the effects of radiation pressure. 

Figure 1.1: The structure of the models used by Roxburgh et al. (1965) and Sackaman & Anand 
(1969). In the outer region, the density is low and the gravitational potential is that of 
a point mass at the centre of the star. In the inner region, the distortions must be small 
enough to be handled using a first order approximation. From Roxburgh et al. (1965), 
with kind permission of Springer Science and Business Media. 

Two dimensional models of rotating stars have also been produced using the self-consistent field 

(SCF) method (Ostriker & Mark, 1968). This method uses an iterative approach to solve for hy

drostatic equilibrium and the gravitational potential. This method was extended by Jackson (1970) 

to solve all the equations of stellar structure. As originally formulated, this method encountered 
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convergence difficulties for models below 9 M©, although more recent versions of this seem to avoid 

the problem (Jackson et al., 2005; MacGregor et al., 2007). 

Differential rotation was first investigated by Schwarzschild (1947); Roxburgh (1964); Clement 

(1969) and Harris & Clement (1971). All of these studies were restricted to relatively slow rotation 

rates. More rapid rotation, combined with meridional circulation, was investigated by Clement 

(1972). Further studies on rapidly rotating stars were done throughout the 1970s (Clement, 1974, 

1978, 1979). 

By the end of the 1970s several methods were in existence for calculating the structure of a 

rotating star, with some restrictions. Most of the techniques described above require the rotation 

rate to be relatively modest. These techniques also worked best with either uniform rotation or a 

modest amount of conservative differential rotation. Some of these were capable of modelling stellar 

evolution, some were not. The real challenge remained realistic stellar evolution, particularly for 

more rapidly rotating or extremely differentially rotating models. To do this requires 2D stellar 

models such as those produced by Deupree (1990, 1995). 

The evolution of rotating stars has been studied by Endal & Sophia (1976, 1978, 1979) in a one 

dimensional framework. They found that over the course of stellar evolution, a rotating star will 

develop various instabilities, both hydrodynamic and secular. In this work I ignore these instabilities, 

restricting myself to zero-age main sequence (ZAMS) models. I use the 2D stellar structure and 

evolution code, R0T0RC (Deupree, 1990, 1995, 1998) to calculate both uniformly and differentially 

rotating models over a variety of rotation rates. 

RQT0RC is a fully implicit 2.5D stellar evolution code which solves the equations of mass conser

vation, three components of momentum conservation, energy conservation and Poisson's equation. 

The 0.5 D means the the model may change in the azimuthal direction, as long as it remains az-

imuthally symmetric. Instead of Mr as an independent variable, as is done in ID codes, R0T0RC 

uses the fractional radius, x = r/R, and colatitude, 6. In 2D, M r is an awkward choice for the 

independent variable, as calculating it would require taking an average over the horizontal density 

distribution. The equatorial radius, R, is a scale factor determined by forcing the integral of the 
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density over the volume to equal the total mass, solved simultaneously with the other equations. In 

the following equations, V0 is the radial flow velocity of the coordinate system. This is set to zero 

in our ZAMS models. 

In two dimensions, the mass conservation equation becomes 

*! + <* - "•>£ + "it+ $£<•"*>+•&&"»* - ° <"> 

The three components of momentum are 

#% + R{v, - V.)*t + B»% + *» + fl» -RV1 - « i . 0 (1.2) 
9t 9a; x d6 p ox ox x x 

u2dve , D / T ^ 9 t , 0 , Rvedve RdP Rd& v\ Vrve , . 

i ^ + ^ r _ K ) ^ + ^ ^ + i ^ + i ^ = 0 (1.4) 
ot ox x do x x 

for the radial (r), colatitudinal (0) and azimuthal (0) components respectively. The factor of R, 

which appears in front of every term, allows the code to include eddy viscosity terms. I do not use 

eddy viscosity, and so these are omitted from the above equations. 

The next equation, energy conservation, contains both radiative transport and convective trans

port in a single equation. This allows ROTORC to carry out both evolution calculations and hydro-

dynamic simulations. 

r,2dE
 n , ,r^E RvedE R2P 8 . 2 , R2P 8 ., . .. . 

* sF + * < * ~ Va)^ + -x--Bo - -WTx^ - ^w[isme)ve] 

,2 4o- 8 fx28TA\ 4cr 8 f sinO 8T4 

R € 3px2 8x \pn 8x ) 3px2sin0 86 \ Kp 86 > ° ^ 

This is done by replacing the opacity by the effective opacity, « e / / , such that 

Keff = K • —^— if Vad > V' rad (1-6) 
Vrad 



Chapter 1. Introduction 7 

where « e / / is the opacity used in equation 1.5 and K is the actual radiative opacity. This approach is 

only applied in the convective cores, which are the only significant convective regions in the models 

I will consider. 

Poisson's equation in two dimensions becomes 

him^i* (~3)-«*-* 
All three components of the momentum equation are used, but the motion in the azimuthal direction 

(<j>) is constrained to be azimuthally symmetric, making ROTORC 2.5 D. These equations are solved 

using the Henyey method (Henyey et al., 1964). 

In ROTORC, the composition is solved simultaneously with the stellar structure equations. This 

is for stability reasons, since if they are not included, the location of the convective core boundary 

can fail to converge. For hydrogen, the 2D composition equation is 

»£+(*-v.)£+2£+*-. a, 

In this set of equations, P is the pressure, E is the specific internal energy, T is the temperature, 

p is the density, X is the hydrogen mass fraction and q is the nuclear destruction rate of hydrogen. 

For the ZAMS models I use, vr = v$ = V0 = 0, and the time derivatives are set to zero. This renders 

the composition, mass and azimuthal momentum equations trivial. 

Recent work (Gillich et al., 2008) has extended this code to allow for accurate modelling of 

both uniform rotation and conservative differential rotation laws. The surface of these models is an 

equipotential surface, defined by 

^ = ®-l-vl + j™^Sl{vv')d^±dm' (1.9) 

where ip is the total potential. The integral term is required for nonuniform rotation. The total 

potential is calculated at the equator for x = 1, and the surface at other latitudes is taken to be the 
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radial zone with the value of tp which is closest to the equatorial value at each angle. The location 

of the surface is chosen to be the point where r = 2/3 in an Eddington grey atmosphere. The local 

effective temperature is calculated as the value to transmit the flux through the local surface of the 

star and is calculated at each latitude. 

As well as investigating uniformly rotating models, I have computed models with differential 

rotation, in which the rotation increases inwards. As described in Chapter 3, differential rotation 

increasing inwards is required if the rotation is to have any significant impact on the core structure. 

The differential rotation law I use comes from Jackson et al. (2005), and is given by 

n<w> = I T ^ F (L10) 

where Q is the angular velocity, and /? is a parameter ranging from 0 (uniform rotation) to 2, the 

maximum allowed by stability. The parameters a and f20 fix the desired surface equatorial velocity 

and the shape of the rotation law at small w. In our models, we have fixed a = 2 and allowed fi0 

to vary. 

1.2 Changes in Apparent Stellar Proper t i es wi th Inclination 

The most basic change in stellar models produced by rotation is the distortion introduced by the 

centrifugal force. The star becomes oblate in shape, and both temperature and emitted flux vary 

from pole to equator. This effect was first quantified by von Zeipel (1924), who found that the 

effective temperature is proportional to the fourth root of the effective gravity. As the emitted flux 

varies across the surface of the star, the flux as seen by an observer will vary with the inclination 

angle, i, between the rotation axis and the line of sight to the observer. Inclination is not measured 

directly, but through Doppler broadening of spectral lines, which gives the component of the velocity 

along the line of sight, vsini. Although there are techniques which can decouple v and i (Stoeckley, 

1968, 1987; Reiners, 2003), these depend on very accurate spectroscopy and accurate synthetic line 

profiles. The synthetic and observed profiles are compared, and differences are thought to indicate 
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the details of the rotation. This technique has mixed success. Reiners (2003) found that while the 

width of the line was related to vsmi, the shape of the line profile depended on veq. Unfortunately, 

the distortions are marginal for veq < 200 km s - 1 , so this technique does not appear to work well 

for slowly rotating stars. There has also been some indication that information about the rotation 

profile can also be found from this method (Stoeckley, 1987). One of the objectives is to use the line 

profile to determine the surface angular momentum distribution, and it is not obvious that we can 

do both from the line profiles. 

The variation in flux across the surface, and corresponding dependence on inclination of the flux 

reaching the observer, makes it difficult to assign an exact effective temperature and luminosity to 

the star. The magnitude one would observe becomes a function of inclination, and the star would be 

observed as a point on a curve whose variable is the inclination in the Hertzsprung-Russell Diagram. 

This effect has been known since the work of Collins (1963, 1966), Hardorp & Strittmatter (1968) 

and Maeder & Peytremann (1970). Early work studying this included only continuum opacity, with 

line opacity first included by Maeder & Peytremann (1970). Both structure and atmosphere models 

have improved up to the most recent work by Linnell & Hubeny (1994); Fremat et al. (2005); Lovekin 

(2005) and Gillich et al. (2008). 

Recently, Gillich et al. (2008) investigated the variation in deduced temperature and luminosity 

with changing inclination in rotating stars. Using R0T0RC, they investigated a wide range of rotation 

rates for both uniform and differential rotation. This was done using model atmospheres generated 

by PHOENIX (Hauschildt & Baron, 1999) combined using the spectral synthesis code CLIC (Lovekin, 

2005; Lovekin et al., 2006). These codes can be used to calculate either spectral energy distributions 

(SEDs) or line profiles, including Doppler shift. Gillich (2007) considered both of these, but in this 

work, I focus on broad band spectral properties, and hence on the SEDs. 

Our spectrum synthesis code, CLIC (Lovekin, 2005; Lovekin et al, 2006), takes the variation in 

radius, temperature, effective gravity, and rotational velocity produced by R0T0RC as functions of 

colatitude and maps this on to a grid on the surface of the stellar model. For each grid zone, the 

code uses the effective temperature and gravity to determine the four appropriate models from the 
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log T e / / , log g grid produced by PHOENIX (discussed below). CLIC then performs an interpolation 

among intensities for these four models in temperature, logg and angle relative to the surface normal. 

This determines the flux emitted from each zone in the direction of the observer. Depending on the 

mode of operation, these fluxes can either be added directly to produce an SED, or Doppler shifted 

according to the local surface velocity to create a line profile. 

When calculating a SED, CLIC evaluates the following integral 

Fx = JJ^I±mmdAproj (,n) 

where I\ is the intensity at wavelength A, £,(0,4>) is the angle between the local surface normal and 

the direction to the observer, 6 and </> are the colatitudinal and azimuthal coordinates respectively, d 

is the distance, and dAproj is the projected area of each surface element. This integral is performed 

for inclination angles i = 0° to 90° in steps of 10°. 

The first step in this process is to determine £. This is complicated by the oblateness of the stellar 

model, as the surface normal is not in the radial direction. The geometry required to determine | 

is shown in Figure 1.2. The angles in this case are greatly exaggerated. This angle is then used to 

interpolate between the intensities at the appropriate effective temperature and gravity to find the 

flux from each zone. This process is repeated for each grid point and wavelength to produce the total 

flux at each wavelength for the model. Only zones for which £ is greater than zero are included in 

the total flux, as zones with £ < 0 do not have a direct line of sight to the observer. This allows me 

to calculate spectra for a distorted stellar model, provided the range of temperatures and gravities 

is within the available intensity grid. Another limitation concerns extreme differentially rotating 

models, which may develop a bulge at mid-latitudes. In this case, zones near the pole which have £ 

> 0 may be blocked by regions of the star at lower latitude. CLIC currently has no way to account 

for such a configuration. 

CLIC has also been extended to calculate Doppler shifted line profiles, as was done by Gillich 

(2007). In SED mode, CLIC falls into the category of 'embarrassingly parallel' problems, as each 

wavelength is independent of the others. Thus, a range of wavelengths can be sent to each pro-
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Figure 1.2: The geometry required to determine the normal to the surface. The distance from the 
model centre to the surface at the location of interest is R. This vector is extended by 
an arbitrary length X. R3 is perpendicular to X and is bounded by the vector X and 
the surface normal. The vector R2 runs from the model centre to the intersection of R3 
with the surface normal. Note that the vector in the direction of the observer could have 
a component outside the plane of the image. 
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cessor and the integral computed without any further interaction with the other processors. When 

calculating a line profile, the assumption of wavelength independence is no longer justified and the 

wavelengths are now coupled. In line mode, CLIC circumvents this coupling by creating a series of 

wavelength bins. Each contribution to the flux at each wavelength is processed individually and 

shifted into the appropriate bin. At the end of the calculation, the master processor sums all of 

the results into a single line profile. Aside from the treatment of the Doppler broadening, the cal

culation proceeds as for the SEDs. The only other difference between the two modes is the range 

of wavelengths that can be processed. In SED mode, CLIC can calculate an arbitrary number of 

wavelengths. In line mode, the code is restricted by the number of bins (currently 4000), so the 

wavelength range is restricted by the desired output wavelength spacing. Of course, this can be 

changed as needed. 

I have used results from the PHOENIX code (Hauschildt & Baron, 1999) as one of the inputs to 

CLIC. PHOENIX provides intensity as a function of angle to the surface normal of the plane parallel 

atmosphere at each wavelength. We calculate atmospheres at a range of temperatures and logg. 

More details on PHOENIX can be found in Chapter 4. Here I will summarize some of the assumptions 

used in the atmospheric models we use. 

In LTE matter and radiation are assumed to be in equilibrium with each other locally, and the 

energy levels of the elements are populated according to Maxwell-Boltzmann statistics. NonLTE does 

not make this assumption, and calculates the population of the energy levels with the temperature 

of the matter decoupled from the radiation temperature. LTE can be a reasonable approximation 

in some cases, but in the hot stars we consider, the departures from LTE can be large, so we use 

nonLTE atmospheres with as many elements as possible included in nonLTE. The version of PHOENIX 

we use was extended by Short et al. (1999) to allow at least two ionization stages of 24 elements 

and the lowest six ionization stages of the 20 most important elements. This includes many of the 

Fe group elements. Much of the work done with PHOENIX has focused on solar type stars, as in 

Short & Hauschildt (2005). Gillich et al. (2008) encountered difficulties converging models with 

temperatures below 24000 K, largely due to convergence difficulties with silicon and phosphorus. In 
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this work then, these elements are treated in LTE for model atmospheres with temperatures below 

24000 K. 

Another potential significant factor in the atmospheres of hot stars is the contribution of radiation 

pressure to hydrostatic equilibrium. When radiation pressure is included, gas pressure decreases to 

maintain hydrostatic equilibrium. Gillich (2007) found that for temperatures greater than 24000 K, 

radiation pressure became so large that the gas pressure dropped below zero in some atmospheric 

layers. This is, of course, unphysical, and causes PHOENIX to fail. Fortunately, radiatively driven 

winds are not critically important for the B stars considered here, so, following Gillich (2007), we 

do not include radiation pressure in our atmospheric models. 

Our atmosphere models are computed using the plane-parallel approximation, in which the at

mosphere is treated as a semi-infinite slab in which the physical parameters vary only with depth. 

This assumption is valid provided the horizontal mean path of the photons is small compared to the 

horizontal distance over which the atmosphere changes, and if the thickness of the atmosphere is 

much less than the stellar radius. These assumptions are generally true, as the radius of the star is 

so large that the surface is effectively flat and the atmosphere will appear homogeneous horizontally. 

For our rotating models, these assumptions are least true at the equator, where the effective gravity 

is lowest and the curvature of the surface is greatest. However, the equator is also where the local 

effective temperature, and hence the flux, is lowest, and the equatorial region is not expected to 

contribute significantly to the integrated flux of the star once the curvature becomes large. Even if 

the plane-parallel approximation begins to break down at this point, the effect on the overall SED 

is expected to be small. 

Using CLIC, model atmospheres from PHOENIX and the rotating stellar structure from R0T0RC, I 

can calculate individual lines or spectra as a function of inclination. Lovekin (2005) found that it was 

not possible to determine inclination from the overall spectrum of a star. Gillich (2007) used the same 

methods to calculate inclination curves, which determine the range of deduced effective temperature 

and luminosity for a given mass and rotation rate. Even if the spectra cannot be used to determine 

the inclination, it is important to be aware of this variation and take it it into consideration when 
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interpreting photometric observations. This is another way in which rapid rotation complicates our 

ability to understand rapidly rotating stars. 

1.3 Stellar Pulsation 

Pulsations in the /? Cephei stars were first detected over 100 years ago, with the prototype discovered 

by Frost (1902). There are currently close to 100 known j3 Cephei type pulsators, all of which are 

thought to be main sequence objects (Stankov k Handler, 2005). These stars usually have one 

or more periods close to the radial fundamental mode or the first nonradial p-mode, with periods 

on the order of several hours. They are generally considered to be early B type stars, with a 

peak in their mass distribution at 12 M©. The definition of this class was first stated by Lesh 

& Aizenman (1978): "These stars have the same short period for their light variation and radial 

velocity variation." Stankov & Handler (2005) have suggested a somewhat clearer definition: "The 

j3 Cephei stars are massive nonsupergiant variable stars with spectral type O or B whose light, 

radial velocity and/or line profile variations are caused by low-order pressure and gravity mode 

pulsations." In practice, this means a j3 Cephei star shows convincing evidence for more than one 

period too short to be consistent with rotation or binarity. Although the majority of /3 Cephei stars 

are probably slow rotators (average vsini cs 100 km s _ ,) projected rotation rates as high as 300 

km s~x are observed (Stankov & Handler, 2005). Rapidly rotating j3 Cephei stars have also been 

detected by Balona & Evers (1999). Based on these results, 10 M© ZAMS models, while at the low 

edge of the mass range, seem reasonable for comparison with /3 Cephei stars. Our rotation range, 0 

km s~ to 400 km s _ 1 also seems realistic. 

Although (3 Cephei stars have been known to pulsate for over 100 years, it is relatively recently 

that their pulsation mechanism has been understood. In fact Cox (1976) listed eight different 

proposed mechanisms for the /3 Cephei pulsation. Of these, all but two failed to account for the 

observed variability. Of the two successful mechanisms, one does not agree with observations. The 

other mechanism (an instability produced by a rapidly rotating core), while successful, seemed very 

contrived. A few years later, the first indications that the pulsation could be driven by the edge of 
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the He + zone were found by Stellingwerf (1978, 1979). This was soon followed by the prediction 

that the ft Cephei stars should occupy an instability strip roughly parallel to the main sequence, 

and that they should obey a period-luminosity (II-L) relation (Cox & Stellingwerf, 1979). Pulsation 

frequencies and stability analysis were performed by Saio & Cox (1980). However, Lee & Osaki 

(1982) argued that the He+-ionization mechanism suggested by Stellingwerf (1978) was not large 

enough to destabilize the stars as a whole. Instead, they argued the pulsations were driven by line 

opacity. Not until the OPAL opacities (Iglesias et al., 1987, 1990; Iglesias & Rogers, 1996) were 

released was it determined that ft Cephei pulsations were driven by the K mechanism, with a bump 

in opacity at T ~ 2 x 105 K (Moskalik & Dziembowski, 1992; Dziembowski et al., 1993). Their 

theoretical instability strip agreed closely with the observed location of these pulsators. 

As indicated above, stars can pulsate either radially or non-radially. Radial pulsations are the 

simplest form, and the entire star expands and contracts in unison. In non-radial pulsations, the 

amplitude varies across the surface of the star. The details of this were first worked out by Pekeris 

(1938) for uniform density, nonrotating models. At the time this work was undertaken, it was 

believed that non-radial modes were unlikely to be observed, as they were thought to be subject 

significantly more damping than radial modes. Pekeris (1938) showed that these assumptions do not 

hold for p-modes or the low order p-modes. Unlike the radial modes, models exist which are unstable 

for all values of the adiabatic index, 7. These results indicated that stars could pulsate non-radially, 

and these modes must be considered. These results were extended to non-rotating polytropes by 

Cowling (1941). 

Various other analytic techniques for determining pulsation frequencies were investigated over 

the next few decades, for example the variational principle (Chandrasekhar & Lebovitz, 1962; Chan-

drasekhar, 1964). In this technique, the pulsation equations are written as a linear operator, L, 

acting on the eigenfunction, such that 

ai = Li (1.12) 

which can be solved for the frequency by mulitplying both sides by £*, the complex conjugate of £, 
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and integrating over the volume (V) 

"£w- < 1 1 3 > 
J £ * £ d V 

The correct values of a occur when this equation is minimized. This is done by assuming a form of 

£ with dependence on some number of parameters. The equation can then be minimized by setting 

the derivative with respect to each parameter to zero, solving for the parameters, and using the 

resulting £ to evaluate a. 

The first numerical solution of the pulsation equations was done by Hurley, Roberts & Wright 

(1966). Again, this was restricted to non-rotating polytropes. The development of non-radial pul

sation analysis is discussed in more detail in Chapter 2. 

Non-radial modes fall into two general classifications; the p-modes and the g-modes. The p-modes 

are predominantly radial modes, with relatively large Eulerian density and pressure perturbations 

(5P and 5p). These modes are sometimes called acoustic modes. The g-modes are predominantly 

transverse modes, and generally have small variations in 5P and Sp. They are often called gravity 

modes. In this work, I focus on p-modes in upper main sequence stars. These modes are classified 

according to three quantum numbers; the radial order n, the angular degree I and the azimuthal 

order m. When discussing the p-modes, they are classified by their / value, followed by pn, where n 

is the number of radial nodes. Hence, the I = 2, n = 3 p-mode would be given as the I = 2, p3 mode. 

The n = 0 mode is a special case, called the / mode. The radial modes are also a special case, as 

they are neither p nor gr-modes. The radial fundamental is called the F mode, and the overtones 

are classified as 1H, 2H, 3H, etc. The azimuthal order, m, is generally not given for any mode, 

as in non-rotating stars, all modes with the same I and m are degenerate. Rotation does lift this 

degeneracy, an effect called mode splitting, which can be calculated using first order perturbation 

theory. In this work, I restrict myself to axisymmetric modes (m = 0), so mode splitting is not 

considered. 

The non-radial pulsation equations are derived from the three components of the linearized 

momentum equation, the linearized mass conservation equation, the adiabatic relation between the 

density and pressure, and the linearized Poisson's equation. The variables in these equations are the 



Chapter 1. Introduction 17 

three components of the linearized displacements (£r, £# and f^,), the linear (Eulerian) perturbations 

to the density (Sp) and pressure {SP), and the linear perturbation of the gravitational potential 

a2pi +2iap(i xQ,) + ~g6p- v6P + pV5(j) = 0 (1.14) 

Sp=-V-pi (1.15) 

*p = - r iPv-? -T- VP (i.i6) 

V2<5^ = -AirGSp. (1.17) 

In the above equations, <? is the effective gravity, given by the gradient of the total potential, \P. 

Hurley, Roberts & Wright (1966) derived two equations to describe the behaviour of the pul-

sational perturbations. One equation was taking V • the momentum equation, and the other was 

obtained by taking r •(V x the momentum equation). With suitable vector manipulation, one can 

show that the angular derivatives of these two equations are in the form of the angular parts of V2, 

for which the solution is the spherical harmonic, Y™. The angular dependence of the equations gives 

terms depending on I since 

V2ym =
 ll^llYl

m (1.18) 

This allows the angular and radial terms to separate, and the radial (£r) and angular (£#) components 

of the displacement of the final solution have the form 

£r{r, 9) = r^XY^icosO) (1.19) 

where X and Q are functions only of r. The radial and angular components of the solution depend 

on r and 9, and the amplitude of the mode varies horizontally, along the surface from the pole to 

equator. This horizontal variation introduces a non-spherical component to the model structure at 

any particular instant during the pulsation, even in non-rotating stars. 
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As stated, I have restricted my studies to axisymmetric (rra = 0) modes, which reduces the 

spherical harmonics to Legendre Polynomials. Theoretically, there is no limit to the order I of a 

pulsation mode, and indeed, modes of high I have been observed in the Sun. In more distant stars, 

practical limitations restrict which modes are observable. Photometrically, amplitude changes are 

expected to cancel out when integrated across the disk for I > 3. As I increases, the amplitude 

of the mode decreases, and the modes become more difficult to detect both photometrically and 

spectroscopically. 

Pulsations in rotating stars are often calculated using a perturbation approach, as developed by 

Saio (1981). This approach treats the rotation as a perturbation to the structure of the star, 

r = a[l + e(a,0,0)]. (1.20) 

The linearized pulsation equations are then expanded in a series in powers of the rotation rate. 

The zeroth power gives the nonrotating eigenvalues and eigenfunctions, and each eigenfunction can 

be written in terms of a single spherical harmonic. For higher order powers the coefficients of the 

perturbations in the pulsation equations, which depend on the static model, will have latitudinal 

dependence if the model is rotating. As discussed above, pulsation also introduces a non-spherical 

component to the stellar structure, even in the case of a non-rotating star. Both the variation from 

pulsation and rotation can be expressed in terms of spherical harmonics, and when combined, the 

eigenfunctions will depend on the products of spherical harmonics. Using recursion relations, these 

can be rewritten in terms of a sum of spherical harmonics. For this technique to work the structural 

perturbations, and hence the rotation rate, must be small. Unfortunately, it is not clear exactly how 

small is small enough. In Chapter 2,1 present one of the first investigations into the limits of second 

order perturbation theory. 

My pulsation calculations have been performed using the 2D linear adiabatic pulsation code NRO 

(Clement, 1998). This code solves the linearized non-radial pulsation equations on a 2D grid within 

the star. One of the primary advantages of this code is that it uses a 2D stellar structure model, 

such as that produced by ROTORC, and thus does not depend on approximations such as perturbation 
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theory or von Zeipel's law (von Zeipel, 1924). To solve the pulsation equations, NRO transforms the 

physical variables into ones which are smooth and well defined on the boundaries (the origin, the 

surface, the rotation axis, and equatorial plane). These variables are 

-^-rrSin\m-^eCO80, 
r\k-\\ > 

6p 

rksinm9' 

5<j> 

rksinrn9' 

dm- (1.21) 

The solutions for £r, £0, pressure perturbation (5p) and perturbation to the gravitational potential 

(5<j>) make up the eigenfunction. The exponent k comes from one possible expression for the pressure 

perturbation 

inf 

5P(r, 9,<j>; I, m, n) = eim* £ A%(r, 9; n, l)rk (1.22) 
k=m 

In this expression, rather than writing the pressure perturbation as a mixture of spherical harmonics, 

it is written as a mixture of radial components of different exponent k (Clement, 1998). Solutions 

are then found for a range of k by direct finite difference integration on the grid. This should not be 

confused with the order of the mode (/), which is not a unique number for pulsations of a rotating 

star, and is used by NRO only to determine the parity of the mode. Odd modes are scaled by a factor 

of cos0, making them symmetric, so the same method of solution can be used either way. The factor 

of cos0 is then added back in at the end of the calculation. The equations are solved along N radial 

lines, one for each spherical harmonic included. For axisymmetric modes, NRO includes the first N 

even spherical harmonics, starting with 1 = 0. If the mode is odd, the scaling by cos# makes this 

equivalent to the first N odd harmonics, starting with 1 = 1. 

The solution to the linear, nonadiabatic, nonradial pulsation equations can be written in terms 

of the j/jS. Using the r component of motion as an example, each of the four equations has the 

2/1 

V2 

2/3 

2/4 

2/5 
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following form: 

rdry3 = A1y1 + A2y2 + Azy3 + Acyc • (1.23) 

where the coefficients in this case are given by 

Ai = (a2 - 4n2sin20)rK, 

A2 = -4n2rKsinM6cos2e, 

A3 = —(k + ma) 

Ac = - \ . (1.24) 

In this, K = 2<5fc0 and M = 2Smo, a — 2Q/a, and A = c2dlnp/d<fi - 1. This form of the equation of 

motion introduces a new variable, 

Vc = 9rr
Kyi + gsr

KsinM6cos26y2 + ry3 + ry4. (1.25) 

where gs = <70/(sin(?cos0). 

Writing the other equations (9 component of equation of motion, the divergence equation, and 

Poisson's equation) in the same format gives expressions for dryi (i = 1..5) which can be integrated 

in radius at all angles. The coefficients of these equations form a band diagonal matrix, which can 

be solved directly. In NRO, the matrix is not solved directly, but uses a technique which allows for 

more rapid solution. These equations are integrated both inward from the surface and outward from 

the centre. The inward and outward integrations are required to be continuous at some intermediate 

fitting surface. Once given an initial guess of the eigenfrequency, the coefficients in all the equations 

have been evaluated, a matrix of the coefficients around the fitting surface can be inverted to solve 

for the perturbations at the fitting surface and the radial zone either directly above or below. 

These values are then used to step through the mesh both backwards and forwards, solving for the 

remaining perturbations. One of the perturbations is forced to be a constant, typically 5r/r = 1 

at some point on the surface, to eliminate the trivial solution (zero everywhere). This leaves one 
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unused condition, making the problem an eigenvalue problem. This unused condition can be used 

to evaluate a discriminant. This discriminant will be satisfied (equal to zero) if an eigenvalue has 

been located. In practice, the code steps through frequency space looking for zero crossings of the 

discriminant. Once the crossing has been found, the code will iterate on the frequency until the 

discriminant is zero within some specified tolerance, returning the eigenfrequency and eigenfunction 

of the mode. This method does sometimes miss frequencies when two modes are quite close together. 

This can usually be remedied by reducing the frequency step size. 

Although adiabatic oscillations like those calculated by NRO are somewhat unrealistic, they do 

provide a good dynamical description of pulsating stars (Cox, 1980). Linear adiabatic theory can 

give good pulsation periods and amplitudes relative to some normalization point within the star. 

However, it cannot tell us anything about the thermal behavior of the star. Linear adiabatic theory 

will not tell us the amplitudes of the pulsations. Also, the linear adiabatic approximation will not tell 

us anything about whether a perturbation will grow or decay. To determine if a given mode can be 

excited in a star requires nonadiabatic calculations. Nonadiabatic oscillations are mathematically 

more difficult, as there are five complex variables (vs. four real variables in the adiabatic case.) 

Nonadiabatic calculations have been performed by several groups, including Saio & Cox (1980); 

Pesnell (1990); Dupret (2001); Dupret et al (2002) and Suran (2007), but these do not include 

realistic modelling of rotation. 

To determine the general properties of the mode, adiabatic calculations are usually sufficient. 

Although there are many nonadiabatic, nonradial pulsation codes in existence, none has the flexibility 

to model the range of rotation rates that can be modelled using NRO. 

1.4 Current Work 

When trying to understand a pulsating, rotating star, observations can give us some basic quantities, 

assuming high resolution spectra are available: the metallicity ([Fe/H]), the acceleration due to 

gravity (<?), the effective temperature (Te/y), the luminosity (L) and vsmi. If the star is pulsating, 

the collection of pulsation frequencies and amplitudes may be available. Based on these observational 
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quantities, we must come up with a theoretical understanding of the star. As discussed above, the 

uncertainty in the effective temperature and luminosity produced by changing the inclination of the 

star, as well as our inability to reliably disentangle rotational velocity and inclination makes this 

interpretation significantly more difficult. 

In order to better understand rotating stars, I have used a 2D stellar pulsation code and a 2D 

stellar structure code capable of modelling both uniform and differential rotation. Using the stellar 

structure code, ROTORC, I have calculated the variation in radius, local effective temperature and 

gravity as a function of both r and 6 for 10 MQ zero-age main sequence (ZAMS) models without 

resorting to approximations such as von Zeipel's law or assuming the surface distortion has a specific 

form. This gives me both 2D stellar structure models and the radius, local effective temperature 

and effective gravity as a function of colatitude. The stellar structure models are then used by NRO 

to calculate pulsation frequencies and the horizontal and radial Lagrangian displacements. Because 

I am not interested in a specific stellar model, I use the pulsation frequencies normalized by the 

frequency of the non-rotating model to investigate the trends with rotation rate. As NRO also gives 

the horizontal variation of the eigenfunction, I can use this to calculate the physical perturbations 

and apply them to the radius, local effective temperature and effective gravity found using ROTORC. 

This perturbed stellar surface structure is used by CLIC to calculate spectra of a star deformed by 

both rotation and pulsation as a function of inclination, without making any assumptions about 

gravity darkening. Since the pulsations vary with time, I calculate two spectra for each model, one 

at maximum compression and one at maximum expansion. Using these spectra I can test some 

current assumptions about photometric mode identification techniques. 

In this work, I have investigated the relationships between rotation and pulsation. In Chapter 2, 

I investigate the numerics of calculating pulsations in rotating stars. Pulsations are most commonly 

calculated using a perturbation theory approximation. As discussed, this assumes that the rotation 

rate is small, so the structural perturbations introduced by rotation can be modelled as a first 

order linear perturbation. As discussed briefly above, this assumption is not always true, but the 

limitations on this method have not previously been well defined. 
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Once I established how many spherical harmonics are required to accurately model pulsation in 

rapidly rotating stars, I turn my attention to the trends rotation produces in the pulsation frequencies 

in both uniformly and differentially rotating stellar models. These results are discussed in Chapter 

3. 

Of course, for any of the observed pulsation frequencies to be useful tools in understanding the 

stellar structure, we must be able to identify them. In Chapter 4, I examine photometric mode 

identification techniques, and how these are affected by rotation. 

While asteroseismology does have the potential to greatly increase our understanding of stars, 

it is important to understand all the factors that can influence the frequencies when trying to 

interpret them. There are many factors to be taken into account when studying rotating stars, 

such as composition, age, convective overshooting, as well as rotation rate and angular momentum 

distribution, not all of which are considered here. If we are to use observed pulsation frequencies 

to constrain rotating stars, mode identification is very important. Mode identification is sometimes 

estimated based on the calculated frequency of the radial fundamental mode for a model with the 

same luminosity and effective temperature as the observed star. As discussed above, the observed 

luminosity and effective temperature of a rotating star is not unique, but depends on the angle 

of inclination at which the star is observed. This complicates determination of the fundamental 

parameters of the star. Rotation will change the pulsation frequencies, and this must also be 

taken into account. If we want to identify a mode based on its observed effective temperature, 

luminosity and pulsation frequency, it is important to understand how these are affected by rotation. 

Rotation also distorts the horizontal variation of the mode, increasing the contribution from higher 

order spherical harmonics. Current photometric mode identification techniques rely on models using 

pure spherical harmonics, and using these models to identify modes in rotating stars may result in 

misidentiflcation of the modes. In this work, I investigate some of these rotational effects in an effort 

to improve our understanding of rotation in pulsating stars. 
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Chapter 2 

Pulsations of Uniformly Rotating 
Stars1 

Radial and nonradial oscillations offer the opportunity to investigate the interior properties of stars. 

We use 2D stellar models and a 2D finite difference integration of the linear pulsation equations to 

calculate non-radial oscillations. This approach allows us to directly calculate the pulsation modes 

for a distorted rotating star without treating the rotation as a perturbation. We are also able 

to express the finite difference solution in the horizontal direction as a sum of multiple spherical 

harmonics for any given mode. Using these methods, we have investigated the effects of rotation 

and the number of spherical harmonics on the calculated eigenfrequencies and eigenfunctions and 

compared the results to perturbation theory. In slowly rotating stars, current methods work well, 

and we show that the eigenfunction can be accurately modelled using 2n d order perturbation theory 

and a single spherical harmonic. We use 10 M0models with velocities ranging from 0 to 420 km s - 1 

(0.89 fic) and examine low order p modes. We find that one spherical harmonic remains reasonable 

up to a rotation rate around 300km s _ 1 (0.69 flc) for the radial fundamental mode, but can fail 

at rotation rates as low as 90 km s_1(0.23 f2c) for the 2H mode or I = 2 p2 mode, based on the 

eigenfrequencies alone. Depending on the mode in question, a single spherical harmonic may fail 

at lower rotation rates if the shape of the eigenfunction is taken into consideration. Perturbation 

theory, in contrast, remains valid up to relatively high rotation rates for most modes. We find the 

lowest failure surface equatorial velocity is 120 km s~ (0.30 fic) for the I = 2 p2 mode, but failure 

velocities between 240 and 300 km s~ (0.58-0.69 f2c)are more typical. 
1The contents of this chapter originally appeared as Lovekin, C.C. h Deupree, R.G. 2008. The Astrophysical 

Journal, 679, 1499 
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2.1 Introduction 

Stellar oscillations provide us with a probe of the internal structure of stars. The oscillations depend 

on the stellar structure, and are modified by factors such as rotation, magnetic fields and tidal forces. 

In theory, if we have sufficiently accurate parameters for a star, we can produce models which will 

constrain the internal structure. Unfortunately, due to the uncertainties on the temperature and 

luminosity of the star and the large number of free parameters (mass, rotation rate, age, etc.), 

this process is much more difficult in practise. Accurate modelling also requires enough observed 

modes to actually place some constraints on the star. The more modes available, the tighter these 

constraints can be, but we must be sure that all the modes used are real. Artificial or extraneous 

modes can make it impossible to produce a matching model. In recent years, the number of stars with 

multiple modes has increased greatly, both thanks to the ground based networks such as STEPHI 

(Belmonte et al, 1993) and WET (Nather et al, 1990), as well as space-based observations such 

as WIRE (Hacking et al, 1999) and MOST (Walker et al, 2003). Current and upcoming space 

missions, such as Kepler (Basri, Borucki & Koch, 2005) and COROT (Baglin & et al, 2001) are 

expected to further increase the number of multiperiodic variables. Unfortunately, the theory still 

lags behind the observations, particularly for rotating stars. 

The first investigation of non-radial oscillations was undertaken by Pekeris (1938). This paper 

derived the linearized, adiabatic equations for nonradial oscillations of non-rotating stars, and then 

solved the equations for models of uniform density. At the time, it was assumed that non-radial 

modes would be subject to significant amounts of damping, more so than the purely radial modes. As 

a result, non-radial oscillations were generally not studied extensively. However, these assumptions 

do not hold for the low order p modes or for all g modes. Unlike radial oscillations, which are unstable 

only for 7 < | , there are some non-radial oscillations of a uniform density sphere which are unstable 

for all values of 7. Based on these results, Pekeris (1938) concluded that non-radial oscillations must 

be considered. Using these results, Cowling (1941) calculated the periods of non-radial oscillations 

for non-rotating polytropes. 

Before the advent of numerical techniques, these equations had to be solved using analytical 
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methods. Much of this work was done by Chandrasekhar, who explored the variational principle 

as a method of solving the linear adiabatic pulsation equations (Chandrasekhar & Lebovitz, 1962; 

Chandrasekhar, 1964). This method depends on an arbitrary guess at the form of the eigenfunction, 

and the resulting eigenvalues depend on the guess. Fortunately, even marginal guesses at the eigen

function can produce reasonable results for the eigenfrequencies with this method. This approach 

is largely unused today, as it has been superseded by computational work using more efficient and 

accurate numerical techniques. 

The first direct numerical integration of the linearized equations for nonradial oscillations was 

performed by Hurley, Roberts & Wright (1966). In this work, they calculated oscillation frequencies 

for non-rotating, polytropic stellar models, for comparison with the earlier analytic approaches dis

cussed above. Although they restricted themselves to polytropic models, their method can relatively 

easily be extended to more realistic stellar models. 

All of these approaches depend on perturbations to a non-rotating (i.e., spherical) stellar model. 

In this case, the calculations are relatively straight forward. Rotation, even moderate rotation, can 

significantly complicate the calculation, and many attempts have been made over the years to solve 

the problem with varying degrees of success. These will be discussed in more detail below. 

In spherical stars, the solution to the linear adiabatic pulsation equations is separable, and can 

be written as 

tr = X(r)Yl
m{6,<l>) (2.1) 

The angular variation can be characterized by a single spherical harmonic, Y[™, and both / and 

m are legitimate quantum numbers. Once a star becomes distorted, e.g. through tidal effects or 

rotation, the situation becomes more complex and several problems arise. The eigenfunction can no 

longer strictly be described by a single spherical harmonic, and thus / is no longer a valid quantum 

number. As long as the star remains axisymmetric, m remains valid. As well as changes in the 

structure of the eigenfunction, the pulsation frequencies themselves will change. It is this change in 

eigenfrequency that has been of most interest to researchers, particularly as observations continue 

to find more and more rotating and pulsating stars, many with multiple frequencies. 
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One of the earlier attempts to solve the linear adiabatic pulsation equations for rotating stars 

was made by Chandrasekhar & Lebovitz (1962), who applied the virial theorem to rotating incom

pressible fluids. The variational principle has also been extended to include slowly rotating stars by 

Clement (1964, 1965). Further attempts at improving the method through a better choice of basis 

vectors have also been made by Clement (1986). Although the variational equations themselves can 

be applied to a star with an arbitrary rotation rate (Q), the method also depends on being able 

to model the structure of the star. The structure of rotating stars has generally been modelled as 

a perturbation to the non-rotating structure. Because the structural perturbations are limited to 

modelling slowly rotating stars, the variational method was also limited to slowly rotating stars. 

An approach used more frequently now is based on a perturbation approach, as developed by 

Saio (1981). In this framework, the rotation is treated as a perturbation on the structure of the 

star. For example, the radial location in a rotating model would be written as 

r = a[l + e (a, <?,</>)] (2.2) 

The linearized pulsation equations are expanded in a series in powers of the rotation rate. The zeroth 

power merely gives the nonrotating eigenvalues and eigenfunctions. Each non-rotating eigenfunction 

can be written in terms of a single spherical harmonic, and the eigenfunction can be characterized 

by three quantum numbers relating to the number of radial nodes and the two angular quantum 

numbers, I and m, associated with the spherical harmonics. The first order in the expansion in 

powers of the rotation rate lifts the 21+1 fold degeneracy in the eigenvalues, while the eigenfunctions 

that correspond to this order are still characterized by a single spherical harmonic. 

We note that this will not be true in the general set of linearized pulsation equations of a rotating 

star. The coefficients of the perturbations in the pulsation equations, composed of terms based on the 

static rotating model, will have latitudinal variations. The eigenfunctions will also have a latitudinal 

variation, so that the equations can be expressed as products of spherical harmonics, which in turn 

can be written as sums of spherical harmonics through appropriate recursion relations. 

In perturbation theory the rotation rate is assumed to be much smaller than the frequency being 
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calculated. This keeps the rotational perturbation small so that including only the first one or two 

terms in the power series expansion is satisfactory. Small is, of course a vague term, and it is not 

clear how small is small. Based on discussions at the Workshop on the Future of Asteroseismology 

held in Vienna in September 2006, estimates of the limiting rotation rate ranged from 50 to 300 

k m s " 1 . Of course, the limiting surface equatorial velocity will be dependent on the mass of the star 

in question. 

Efforts to more accurately include rotation have been developed. These methods require 2D 

calculations, so are more time consuming and complex. As a result, previous studies have all faced 

restrictions and limitations. For example, Espinosa et al. (2004) calculated the adiabatic oscillations 

of rapidly rotating stars with uniform rotation. To succeed, they applied the Cowling approximation, 

neglected the Coriolis force and neglected the Brunt-Vaisala frequency in the adiabatic equation. 

Yoshida & Eriguchi (2001) have modelled quasi-radial modes at a range of rotation rates in rotating 

neutron stars using the relativistic Cowling approximation. Other methods, such as that employed 

by Lignieres, Rieutord & Reese (2006) and Reese, Lignieres & Rieutord (2006) have fewer physical 

restrictions, but have so far been restricted to explorations of polytropic models. 

The effects discussed in this paper are only expected to matter for stars undergoing moderate to 

rapid rotation. A recent study of OB stars (Daflon, 2007) found that 50 % of OB stars have rotation 

velocities greater than 100 km s _ 1 . At least some of these stars are expected to pulsate. For 

example, (3 Cephei-type pulsations have been detected in Spica (Sterken, Jerzykiewicz & Manfroid, 

1986), which is also rotating with a vsini ~ 160 km s _ 1 . For the f3 Cephei stars as a category, the 

projected rotation velocities range from 0 to 300 km s~ (Stankov & Handler, 2005). The average 

vsini ~ 100 km s _ : , although this could be a selection effect, as the highest amplitude pulsators are 

the more slowly rotating stars. Another category of pulsating stars, the low amplitude 5 Scuti stars 

(LADS) have been detected with vsini up to 250-300 km s_1(Breger, 2007). The models we consider 

in this paper are 10 M© ZAMS models with solar (Z = 0.02) metallicity. Although j3 Cephei stars 

have evolved along the main sequence, the trends produced by these models should be comparable 

to typical (3 Cephei stars. One effect which may be important is mode bumping, which will appear 
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in real /? Cephei stars, but does not appear in our unevolved models. Our models include uniform 

rotation at rates from 0 to 0.89 flc. Our method also allows us to consider differential rotation, and 

this will be discussed in a future paper. 

Clement (1998) has developed a finite difference method for directly evaluating the eigenfunctions 

on a 2D grid. In this paper, we combine this method with 2D stellar models produced by ROTORC 

(Deupree, 1990, 1995). The combination of these two approaches bypasses many of the restrictions 

faced by previous approaches. Our numerical methods and models are described in more detail in 

§2.2. We investigate the effects of rotation on the calculated eigenfrequencies (§2.3) and eigenfunc

tions (§2.4), with the aim of establishing the range of validity of modes calculated with one spherical 

harmonic. In §2.5 we compare our results with those predicted by second order perturbation theory. 

2.2 Method 

Our stellar models are calculated using the 2D stellar evolution code ROTORC (Deupree, 1990, 1995), 

allowing us to self-consistently model the surface and structure of the star for rotation rates from 

zero up to near-critical rotation. In this paper we focus on uniformly rotating 10 MQZAMS models 

with X=0.7, Z=0.02. We use the OPAL opacities (Iglesias & Rogers, 1996) and equation of state 

(Rogers, Swenson & Iglesias, 1996) in these calculations. These models are fully 2D, with 10 angular 

zones from pole to equator and 349 radial zones. The small number of angular zones is acceptable 

for these models because the horizontal variation is so smooth. We have computed a few rotating 

models using 20 angular zones and find differences in the horizontal variation of the density to 

be only about 0.1%. The pulsation code uses Fourier transform interpolation to convert from our 

angular zoning to its own angular zoning, and we feel the ROTORC angular zoning is not a major 

source of error in the calculations and use 10 angular zone models in this work. 

The location of the surface of the stellar model is found by assuming it lies on an equipotential 

surface. The value of the equipotential is determined by the value of the total potential in the angular 

zone which has the largest radius (for uniformly rotating models, this is always at the equator). The 

radial zone which has this value of the total potential is found at each angular zone and the surface 
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boundary conditions applied there. One source of inaccuracy is that a radial zone is either completely 

interior or exterior to the surface, so that the surface is defined as the radial zone interface which 

is closest to the location of the equipotential. Our rotating models are made by imposing a surface 

equatorial velocity and an internal angular momentum distribution (in this case, uniform rotation) 

and allowing the surface to change as needed. This can lead to small differences between the imposed 

(target) surface equatorial velocity and the actual surface equatorial velocity, typically less than 2 

km s _ 1 . Throughout this paper, we refer to models by the target surface equatorial velocity. 

For our pulsation calculations, we use the non-radial oscillation code (NRO) developed by 

Clement (1998). Instead of expressing the solution as a sum of spherical harmonics, the code 

solves the perturbation equations on a 2D spherical grid. In R0T0RC, the stellar model is defined on 

a spherical polar grid, with the stellar surface location being an equipotential surface as discussed 

above. NRO transforms this into a model defined on surfaces of constant density. The 2D nature 

of the code allows us to account for the effect of the centrifugal distortion, but the Coriolis force is 

neglected. The pressure perturbation can be expressed in two ways: 

oo 

6P(r,e,<t>;l,m,n) = e i m* ]£a[n(r;n,Z).Ff ,(cos0) 
l=m 

or 

= eim*^AZ(r,e;n,l)rk. 
k=m 

In this code, the second form of this general equation is used. Keeping this general solution in mind, 

the linear adiabatic pulsation equations can be recast using 5 variables, related to the radial and 

angular velocity perturbation, the pressure and gravity perturbations, and the radial derivative of 

the gravitational perturbation. These variables are defined as follows: 
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Vi = K — 1 . c i n 7 n n rK~±sin 

V2 rk-1sinm-10cosO' 

2/3 = k • ma, (2-3) 
rKsinmO 

Vi = rksinmO' 

and 2/5 = dryi 

where k is the radial exponent, m is the azimuthal quantum number, and k = 0 and m = 0 are 

special cases. If fc-1 and m-1 are negative, they are replaced by 1. This form of the equations 

allows the boundary conditions to be applied while avoiding singularities. With these variables, the 

relevant linearized equations can be expressed in the general form 

drVi = f{yi,dryj^i,dgyi) (2.4) 

The full form of the equations and their derivations can be found in Clement (1998). 

The coefficients of the finite difference expressions of the equations (as represented in Eqn. 2.4) 

covering the entire 2D grid can be put in a band diagonal matrix. Each element of this band diagonal 

matrix is itself a matrix, containing the coefficients at each zone in the 2D grid. The solution of the 

finite difference pulsation equations proceeds in two steps, from the center outwards and from the 

surface inwards. Each integration also requires an initial guess of the eigenfrequency. 

The inward and outward integrations of the eigenfunctions are required to be continuous at some 

intermediate fitting surface. Once all of the coefficients of the equations have been evaluated, a 

subset of the matrix, including the fitting surface and the radial zones immediately surrounding it 

can be inverted to solve for the perturbations at the fitting surface and the radial zone either directly 

above or below the fitting surface. These values can then be used to step inwards and outwards 

through the mesh to solve for the perturbations throughout the rest of the grid. At some point on 
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the surface,one of the perturbations is forced to be a constant (typically, dr/r = 1) to eliminate the 

trivial solution of all variables being zero everywhere. As a result of this, there is one condition that 

has not been used. This can be used to evaluate a discriminant, which will only be satisfied (equal 

to zero) if an eigenvalue has been located. Using this method, we can step through eigenfrequency 

space, solving the matrix, evaluating the discriminant and looking for zero crossings. Once a crossing 

has been located, various convergence schemes can be used to calculate the exact eigenfrequency. 

This method can miss frequencies when two eigenfrequencies are quite close together, although these 

can usually be avoided by reducing the frequency step size. 

The code can include up to nine angular zones in the solution for the eigenfunctions, performing 

one radial integration for each angle included. At the end of the calculation, the solution is known 

at N angles, which can subsequently be decomposed into the contributions of individual spherical 

harmonics. This is done with Fourier transforms, which transform the N discrete points into coef

ficients of the appropriate cosine series. After some algebraic manipulation, this series is converted 

into a Legendre series, which gives us the relative contribution of each Y™(or Legendre Polynomial 

for the case where m = 0). Because each radial integration contains angular derivatives, also eval

uated using finite differencing, the resultant coupling among spherical harmonics arises naturally. 

Thus, this method allows us to directly model the coupling among spherical harmonics in a single 

pulsation mode for rotating stars in a natural way. 

Because I is not a legitimate quantum number for rotating models, specifying I is not necessary. 

In the pulsation code the input value of I is used to specify the parity of the mode, not the exact 

value of I. Based on the parity of I, the code includes the first k even or odd basis functions, where k 

is the input value of the number of angular zones to be included. We limit ourselves to small input 

values of I because those are expected to be the most easily observable. We also restrict ourselves 

to axisymmetric modes (m=0), although this is not a constraint intrinsic to the method. We have 

also restricted ourselves to modes with small radial quantum number (n). 

Because I is no longer a valid quantum number, we need a new designation for mode identification. 

We have chosen to identify the mode with a quantum number, IQ, which is the value of I of the mode 
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in the nonrotating model to which a given mode can be traced back. This tracing back is based on 

examining both the eigenfrequency and the angular shape of the eigenfunction (the modes at different 

radial quantum number are easy to resolve; no mode bumping is exhibited in these ZAMS models). 

This is quite easy up to moderate rotation rates because one spherical harmonic tends to dominate. 

This method fails for rotation velocities above 420 km s_1because no spherical harmonic dominates. 

For rotation velocities above 360 km s _ 1 , we find this method becomes somewhat uncertain and 

produces an irregular progression in frequency for some modes. We thus consider the pulsation 

properties for models up to 420 km s _ 1 , but regard the frequencies above 360 km s_ 1as uncertain. 

Although we only consider pulsation up to 420 km s _ 1 , our static models go up to near critical 

rotation. 

2.3 Accuracy of Eigenfrequencies 

As described in the above section, NRO, combined with 2D structure models from R0T0RC, allows 

us to calculate the eigenfrequencies for a rotating star without making any a priori assumptions 

about the structure of the star. The method of solution of NRO allows for the inclusion of multi

ple spherical harmonics. As a result, we can calculate eigenfunctions for distorted stars including 

the coupling between spherical harmonics. In contrast most current calculations and observations 

generally assume that pulsation frequencies and observed modes can be characterized by a single 

spherical harmonic. It is therefore of interest to determine at what surface equatorial velocity modes 

can no longer be adequately described by a single spherical harmonic. 

One of the issues arising out of the following discussion is where a difference between two cal

culated modes becomes significant. Both ground-based and space-based observations continue to 

improve, as new projects are continuously launched (figuratively and literally). As an example, 

COROT is expected to measure frequencies to a precision of less than 0.01/uHz for the long runs, 

and better than 0.065/uHz for a faint object during short runs (Michel et al., 2007). Based on these 

numbers, calculated frequencies do not need to change by much to be outside the observational 

uncertainties. However, we must ask ourselves whether it is reasonable to expect our models to 



Chapter 2. Pulsations of Uniformly Rotating Stars 34 

match this accuracy. The linear adiabatic pulsation code uses 1 0 - 6 as the convergence criterion on 

the discriminant described in §2.2. There will be other sources of error on the final eigenfrequency, 

such as from the finite difference representation of the pulsation equations. Neglecting these other 

sources of error, NRO converges modes to an accuracy of about 10~6, or about 0.001 /iHz, more 

than sufficient to match the predicted COROT accuracy. However, there are inaccuracies that re

sult from the finite difference zoning in the static models. When we change the surface equatorial 

velocity from one model to the next, we change the distribution of material in the star, although the 

radial zoning (fractional surface equatorial radius) remains the same. The changes become larger 

as the rotation rate increases. This is equivalent to changing the radial zoning, which experience 

from the early calculations of linear radial pulsation indicated has a sensitivity on about the one 

percent level. We have also fairly dramatically rezoned a couple of our models and found that the 

eigenfrequencies changed on about the one percent level, or about 8.5 pHz for our models. The 

higher radial order p modes are slightly more affected because the outer layers of the model, where 

the gradients of model quantities are steeper, play a larger role. Clearly, our ability to measure 

observational frequencies to high precision is irrelevant until models improve enough to match them. 

Until then, for changes induced by rotational effects to be considered significant, they must be larger 

than our model uncertainties. 

Another uncertainty consideration is the angular resolution of our pulsation calculations. As 

described above, the number of spherical harmonics used in NRO determines the number of radial 

integrations performed. There are several ways we can assess the effects of this changing angular 

resolution. Firstly, we would expect the slowly rotating modes to be relatively unaffected by angular 

resolution. This is indeed what we find. In the case of slow rotation, the coefficients for the higher 

order spherical harmonics are small, typically not more than a percent up to 120 km s~ . Over these 

same rotation ranges, we also expect the frequency to be relatively unaffected by angular resolution, 

and this is indeed what we find. The frequencies shown in Fig. 2.1 differ by less than a quarter of a 

percent over this rotation range. 

In the majority of our plots, we show our results as a function of surface equatorial velocity, as 
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Table 2.1: Summary of model parameters 
>eq (kmS_1) 

0 
10 
30 
50 
90 
120 
150 
180 
210 
240 
270 
300 
330 
360 
390 
420 

actual veq 

0 
9.97 
29.91 
49.85 
89.72 
119.63 
149.54 
179.45 
209.35 
239.26 
269.17 
299.08 
328.98 
358.89 
388.80 
418.71 

n (xio-3) (s-1) 
0.0000 
0.0036 
0.0108 
0.0180 
0.0322 

0.0428 
0.0531 
0.0632 
0.0729 
0.0824 
0.0913 
0.0998 
0.1076 
0.1148 
0.1215 
0.1272 

n/nc 
0.00 
0.03 
0.08 
0.13 
0.23 
0.30 
0.37 
0.44 
0.51 
0.58 
0.64 
0.69 
0.76 
0.81 
0.85 
0.89 

Reg (R©) 
3.973 
3.973 
3.976 
3.981 
4.000 
4.021 
4.048 
4.082 
4.125 
4.175 
4.237 
4.307 
4.393 
4.491 
4.600 
4.729 

-ti'p/-K'eqr 

1.000 
1.000 
0.999 
0.997 
0.991 
0.986 
0.977 
0.967 
0.953 
0.924 
0.908 
0.887 
0.866 
0.846 
0.821 
0.796 

-Lp/ *-eq 

1.000 
1.000 
1.001 
1.003 
1.008 
1.013 
1.021 
1.032 
1.051 
1.065 
1.082 
1.100 
1.125 
1.149 
1.173 
1.203 

this is the unit most easily compared to observations. However, for comparison with other models, it 

is more useful to show results as a function of angular rotation rate expressed as a fraction of critical 

rotation (fi/Qc). Critical rotation was calculated using a model rotating at 575 km s _ 1 , with an 

equatorial radius of 5.792 R 0 . This model is quite close to critical rotation. We have summarized 

the conversion between these two frames of reference, as well as some other parameters of our models 

in Table 2.1. 

2.3.1 Frequency Changes 

The simplest way to determine where the assumption that a single YJ™can be used is to compare 

the frequencies as calculated with different numbers of spherical harmonics. This is illustrated in 

Fig. 2.1, which shows the normalized frequencies for the l0 = 0 and Zo = 1 fundamental modes, as 

calculated using 1, 2, 3 and 6 spherical harmonics. At some cut off surface equatorial velocity, the 

eigenfunctions calculated with only a few spherical harmonics begin to deviate significantly from 

those calculated using 6 spherical harmonics. For the IQ = 0 mode, the frequencies calculated with 

1 spherical harmonic are in reasonably good agreement to quite high velocities, remaining within 

approximately 0.5 % of the frequencies calculated with more spherical harmonics. The lo = 1 mode 

as calculated with 1 spherical harmonic rapidly diverges from the frequencies as calculated with 
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multiple basis functions. In this case, the single spherical harmonic frequency reaches a difference 

of 1% at a surface equatorial velocity of 210 km s_1(0.51 ilc). 

Similar results are found for higher order modes. These results are summarized in Table 2.2. 

To determine the location of the cut off surface equatorial velocity, as described above, we take a 

difference of 1% to be significant, as discussed in §2.3. 

Although the periods are expected to change depending on the details of the model, period 

differences and ratios are expected to be much more stable. Hence, in the next two sections we will 

consider the large separation and period ratios of our frequency calculations. 

2.3.2 Large Separations 

We have studied the large separation between the n = 0, 1 and 2 modes for IQ = 0-3. We have 

calculated the large separations in the usual way 

Av = i>i,n+i - i>i,n- (2.5) 

Before comparing these for the effects of the number of spherical harmonics included, we need to 

account for rotation, which can change the large separation by changing the model structure. First, 

we normalize these large separations with respect to the non-rotating model 

Dv = Av{v = 0)- Av(v). (2.6) 

We can then use these normalized large separations to look for the effects of the number of spherical 

harmonics included in the calculation (N) 

Vv = DvN - DvN=6. (2.7) 

For this calculation, we have assumed that the frequencies calculated with 6 Y™s are closest to the 

true pulsation frequencies, so the smaller the differences between this and other calculations, the 
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Figure 2.1: The frequency changes as a function of surface equatorial velocity for the fundamental 
mode for lo = 0 (top) and Zo = 1 (bottom). Frequencies shown are calculated with (O) 
- 1 Yf , o - 2 Y|», (•) - 3 Yf1, and (A) - 6 YJ". 
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Figure 2.2: The relative large separation (Eqn. 2.7) as a function of surface equatorial velocity 
between the IQ = 0 fundamental and first harmonic. Symbols are as follows: (O) - 1 
spherical harmonic, (A) - 2 spherical harmonics (o) - 3 spherical harmonics, all relative 
to 6 spherical harmonics. Dashed lines indicate the significance criterion adopted in this 
work. 

more accurate the smaller number of spherical harmonics. This is illustrated in Fig. 2.2, which shows 

the results of Eqn. 2.7 as a function of surface equatorial velocity for the separation between the l0 

= 0 fundamental and first harmonic. 

The uncertainty in the theoretical calculations of large separation is inversely proportional to 

the uncertainty in the radius of the stellar model in question. Taking the uncertainty in radius to 

be the size of one radial zone, for our models, this is approximately 0.04/zHz. Observationally, large 

separations are well determined for solar type stars, with uncertainties typically less than 1/xHz. As 

a conservative estimate, we have chosen lfiHz as our significance criterion, as shown by the dashed 

lines in Fig. 2.2. It should be noted that once the large separations with 1 and 2 spherical harmonics 

begin to diverge, they do so quite rapidly, so unless the cut off criterion is appreciably smaller ( < 

0.5pHz), the cut off surface equatorial velocity is not an extremely sensitive function of the cut off 

criterion. The limiting rotational velocities estimated using the large separations are summarized in 
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column 4 of Table 2.2. 

2.4 Accuracy of Eigenfunctions 

So far, the limiting rotation rates entered in Table 2.2 have been for the IQ = 0 and 1 modes only. 

This is a result of the way spherical harmonics are included in NRO. To calculate the Zo = 2 mode, 

for example, the code will select even Y™s starting with l0 = 0, so at least 2 YJ"s are required. 

This is true for any mode with lo > 2. As a result, we cannot directly compare eigenfrequencies 

calculated with several spherical harmonics to those calculated with a single spherical harmonic. 

We can still compare the eigenfunctions, and in this section this is what we will do. One of the 

advantages of including several spherical harmonics is the ability to study the effect of rotation not 

only on the eigenfrequencies, but also on the shapes of the eigenfunctions. For a non-rotating object, 

regardless of how many spherical harmonics are included, the eigenfunction remains a pure Y™,as 

it should. As the rotation rate increases, neighbouring spherical harmonics begin to contribute 

progressively more to the shape of the eigenfunction. These effects could be quite important for 

mode identification, and need to be considered in rapidly rotating stars. One technique for mode 

identification uses the pulsation amplitudes in different colors as determined by single spherical 

harmonics. With rotation significantly altering the modes by coupling spherical harmonics, it could 

alter these color amplitudes and change the mode identification. We find that the effects of the 

coupling can become significant, even at very moderate rotation rates. 

We have used a combination of the value of the eigenfrequency and the angular variation of the 

eigenfunction at the surface to identify the modes as we progressed from one rotating model to the 

next. Of course, with the finite difference approach the angular variation of the eigenfunction can 

vary with depth. Fig. 2.3 presents this variation for several rotation rates for the radial fundamental 

mode. Each plot contains the variation at several different depths. As expected, the variation with 

depth is small for slowly rotating models, and grows as the rotation rate increases. Despite this 

growth in variation, the profile remains recognizably the same until the most rapid rotation rate 

presented. This occurs at a rotation rate at which we are already beginning to have trouble tracing 
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Figure 2.3: Variation in the radial eigenfunction for the lo = 2 mode as a function of colatitude at 
various depths (fractional surface equatorial radii of approximately 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9 and 1.0) for models rotating at 50, 150, 240, 300, 360, and 420 km s~x. 
The convective boundary is located between 0.2 and 0.3 Req. The variation at each 
depth is normalized to be unity at the pole for purposes of comparison. The variation is 
smallest at the center of the star, and increases towards the surface. On the plot of the 
420 km s - 1 , the layer closest to the center is indicated with a dashed line, and the layer 
closest to the surface is indicated by a dot-dashed line. In most cases, 420 km s_ 1 is the 
most rapidly rotating model considered, as mode identification becomes difficult. 

the modes from one rotation rate to the next as we have previously mentioned. 

Fig. 2.4 shows the angular variation at the surface in the radial component of the IQ = 0 funda

mental mode at 90 and 270 km s~ . At 90 km s~ , the distorting effects of rotation are negligible, 

although the differences are visible. In contrast, by 270 km s _ 1 the differences between the numbers 

of spherical harmonics are quite significant, and 1 spherical harmonic is clearly not sufficient to 

model the horizontal shape of the mode. In comparison, the eigenfrequencies were considered to 

be accurate using one spherical harmonic up to rotation rates of 300 km s _ 1 . This highlights the 

truism that even marginal eigenfunctions can give reasonable eigenfrequencies. By 270 km s _ 1 , the 

mode no longer looks like an I = 0 mode, nor even an I = 2, but is beginning to distinctly show 

the characteristics of the I = 4 contribution. These two velocities were chosen based on the relative 
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Figure 2.4: Angular variation in the radial eigenfunction for the radial fundamental mode of a 
model rotating at 90 (top) and 270 km s - 1 (bottom). On both plots, the shape of the 
eigenfunction is shown as calculated using 1 (dotted), 2 (solid), 3 (dashed) and 6 (dot-
dashed) spherical harmonics. 
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Figure 2.5: The relative contribution to the F mode of each spherical harmonic for 2 (top) 3 (mid
dle) and 6 (bottom) spherical harmonics. In the top plot, after v ~ 150 km s _ 1 , the 
contribution from lo = 0 drops below ~ 90% and we say that you need more spherical 
harmonics to be able to model the mode. Symbols are defined as follows: O - I = 0, • -
I = 2, x - I = 4, o - I = 6, + - I = 8, A - I = 10. 

contribution of each Yj™, shown for the radial fundamental mode in Fig. 2.5. At 90 km s~ , with all 

three sets of basis functions, the I = 0 component contributes nearly 100%, while at 270 km s _ 1 , the 

contribution of the same component drops below 50% when 6 spherical harmonics are considered. 

From Fig. 2.5, we can see that with two and three spherical harmonics, all of the spherical 

harmonics contribute a relatively significant amount by the time the model is rotating at intermediate 

speeds. In contrast, with six spherical harmonics, the contribution from the highest order spherical 

harmonics (I = 10) remains small out to at least 300 km s _ 1 . Although the contribution starts 

to become significant at very high rotation rates (v > 350km s _ 1 ) , it still remains a factor of 2-3 

lower than the main contributors. From this, we have taken the shape of the eigenfunction with six 

spherical harmonics as being the most correct and have used it as a basis of comparison. 

Based on the results shown in Fig. 2.4, we know that one spherical harmonic ceases to be sufficient 

somewhere between 90 and 270 km s _ 1 . From Fig. 2.5, we can see that the relative contribution of 
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Figure 2.6: As for Fig. 2.4, but for the velocities on either side of the cut off surface equatorial 
velocity. At the lower velocity (150 km s _ 1 , top), the shape can be calculated reasonably 
well using one YJ™, but at the higher velocity (180 km s _ 1 , bottom), 2 or more are needed 
to accurately reproduce the horizontal variation in the eigenfunction. Symbols are the 
same as in Fig. 2.4. 

the Y™ drops below 90% at a surface equatorial velocity between 150 and 180 km s . The angular 

variation of the eigenfunctions for these two velocities are shown in Fig. 2.6. It is at this point that 

we would say multiple spherical harmonics are required to accurately reproduce the shape of the 

mode (cf. Fig. 2.6). 

We have developed a quantitative measure of how the shapes of the eigenfunction differ from 

that calculated using six spherical harmonics. This estimate is calculated by taking the absolute 

value of the difference between the 6 basis function eigenfunction (standard) and one of the other 

eigenfunctions (comparison) at 9 points. These points are equally spaced across the surface of the 

model, with 6 = lOi. The point at d — 0 is excluded, as all the eigenfunctions are normalized to 

one at this point. These differences are then squared and summed. The square root of the sum is 
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Figure 2.7: The mean difference between the shape of the radial fundamental eigenfunction with 6 
spherical harmonics and a pure PQ mode (O), 2 spherical harmonics ( • ) and 3 spherical 
harmonics (A). Although there is some variation, all three curves show a sharp rise 
beyond 200 km s _ 1 . See text for the definition of the mean difference. 

normalized by the number of points to give a measure of how different the two curves are: 

mean difference = — . X>-bi) (2.I 

This difference as a function of surface equatorial velocity is shown in Fig. 2.7. The differences 

between the eigenfunctions calculated with 1, 2 and 3 spherical harmonics relative to 6 spherical 

harmonics rises sharply starting at a surface equatorial velocity of 180 km s - 1 . Based on this rise 

and the eigenfunctions shown in Fig. 2.6, we estimate that when the mean difference rises above 

0.06, more spherical harmonics are needed to accurately reproduce the shape of the mode. 

For the other modes, the results are qualitatively similar, although the extent of the differences 

varies. The results for all four IQ values considered in this paper are summarized in Table 2.2. 

Overall, one spherical harmonic remains a good approximation out to at least 90 km s_1(0.23 fic). 
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Table 2.2: Summary of velocities at which 1 Y™fails to accurately reproduce the mode. 

lo 
0 
0 
0 
1 
1 
1 
2 
2 
2 
3 
3 
3 

n 
0 
1 
2 
0 
1 
2 
0 
1 
2 
0 
1 
2 

Frequency" 
>360 
240 
180 
210 
210 
180 
-
-
-
-
-
-

Vv*> 
-
160 
24 
-
140 
30 
-
-
-
-
-
-

Eigenfunction0 

165 
60 
25 
110 
105 
85 
75 
60 
45 
70 
85 
-

"Limiting surface equatorial velocity based on frequency differences larger than 1% 
''Limiting surface equatorial velocity based on difference in the large separation greater than 1/zHz 
cLimiting surface equatorial velocity based on eigenfunctions with mean differences larger than 0.06 

For some modes, such as the radial fundamental, this approximation remains valid to much higher 

rotation rates (270 km s _ 1 , 0.64 f2c). As both the angular and radial order of the mode increase, 

the limiting surface equatorial velocity decreases. In most cases, we find that the differences among 

calculations with different numbers of spherical harmonics grow quickly as a function of surface 

equatorial velocity once the differences become sizeable. We can conclude that our results are not 

particularly sensitive to the exact value of the cutoff criterion we have chosen, as long as it is not 

significantly lower than what we have used. We also find that comparing frequencies or frequency 

differences produce approximately the same results. Based on our results for a 10 M©model, a 

single spherical harmonic is never a good approximation for rotation rates above 0.64 flc, appears 

to always be a good approximation for rotation rates below 0.23 Qc, and must be used with caution 

for rotation rates between these two values. Although there may be some mass effects, we do not 

expect these results to change significantly for masses close to 10 M©. 

2.5 Comparison with Perturbation theory 

Second order perturbation theory is routinely used to compute linear pulsation modes for rotating 

stars in which the centrifugal forces are expected to affect the pulsation frequencies. It has been 
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difficult to comment on when second order perturbation theory can be expected to fail because there 

have been few calculations of eigenfrequencies using other methods. Our approach will allow placing 

some limits on the range of applicability of second order perturbation theory, but again these limits 

will be a product of the accuracy obtainable or required. 

Second order perturbation theory shows that, for axisymmetric modes as we consider here, the 

change in eigenfrequency is a linear function of the square of the rotation rate (e.g., Saio 1981). We 

shall compare our results with this linear relation in two separate ways, both of which determine 

the failure of perturbation theory by a deviation from this linear relation. Of course, the result 

will depend on the quantitative value as to when the deviation becomes significant, a point we will 

discuss at the end of this section. We shall use the results we believe most accurately reflect the 

true values of the pulsation frequencies, the results with six angular zones in the 2D pulsation grid 

for our comparison of eigenfrequencies. 

The first method starts with the first four models in the rotation sequence (surface equatorial 

rotation velocities from 0 to 90 km s . We calculate the best fit to the linear relationship as given 

by perturbation theory, and the standard deviation. We repeat this exercise, each time adding 

one more model to the analysis, until all rotation velocities are included. As long as the linear 

relation is satisfied, we expect the standard deviation to be approximately constant as we add 

results for more rapidly rotating models. At some point, as the rotation becomes more rapid, the 

standard deviation will become larger and at some threshold value will be declared no longer to 

be an adequate representation of a straight line. Thus second order perturbation theory would no 

longer be considered reliable. We plot this standard deviation as a function of the rotation rate 

of the most rapidly rotating member of each sample in Fig. 2.8. We somewhat arbitrarily set our 

threshold at 4 x 10~6 as being a value above the flat region for all modes. The values for the limits 

of applicability of perturbation theory computed by this method are listed in the column entitled 

'Linear Fit' of Table 2.3. We have also examined the slope of each linear fit, and as expected, find 

that the slope changes gradually where the linear fit is good, and more rapidly as more points are 

added. 
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One difficulty with the above approach is that the coefficients of the linear fit change as more 

rapidly rotating models are added. A more constraining determination of the threshold of pertur

bation theory might be obtained by using the first few members of the sequence to determine the 

coefficient of the linear fit. The assumption is that the slope that perturbation theory would predict 

is correctly computed using the first few slowly rotating members of the sequence. We use the first 

five members in our rotation sequence to calculate this coefficient. We then use this coefficient to 

determine perturbation theory frequencies at each of our surface equatorial velocities. As before, 

we take the differences between the two methods as significant when they are larger than 1%. The 

results for this method are listed in the column entitled 'Coefficient Fit ' of Table 2.3. We compare 

our pulsation frequencies with those predicted assuming the coefficient computed for the first four 

members of the sequence is valid at all rotational velocities in Fig. 2.9. 

We find the trends for both methods of evaluating the threshold are similar for the two methods, 

but that the thresholds computed for the coefficient fit are more constrained. This is to be expected 

because forcing a linear fit to have a certain slope is more confining that merely forcing a fit to be 

linear. It is interesting that the threshold for perturbation theory occurs at generally higher rotation 

speeds than the threshold for the validity of a single spherical harmonic. The extrapolation of the 

linear fit to higher rotation velocities is flatter than our calculation with six angular zones and much 

flatter than our calculation with only one angular zone. 

Our results indicate that perturbation theory is satisfactory to appreciably larger rotation veloc

ities than the results of Reese, Lignieres & Rieutord (2006), who found that third order perturbation 

theory failed for rotation rates above about 0.2 flc. Much of this difference arises from the much 

tighter constraint they placed on what difference in eigenvalues is significant. They are able to do 

this because they perform their comparisons using polytropes, which can be numerically integrated 

very accurately, whereas we use finite difference techniques to generate our more realistic stellar 

models. A subsidiary consideration is that they can control both the total mass and radius, and 

thus can arbitrarily scale from one model to the next, whereas our models include the conservation 

of energy, which removes the radius as an arbitrary parameter. Also, the surface locations at each 
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Table 2.3: Summary of velocities at which perturbation theory fails to accurately reproduce the 
mode. 

l0 

0 
0 
0 
1 
1 
1 
2 
2 
2 
3 
3 
3 

n 
0 
1 
2 
0 
1 
2 
0 
1 
2 
0 
1 
2 

Linear fit 
-
-

300 
-

>360 
360 
330 
330 
270 
330 
330 
360 

Coefficient fit 
360 
240 
270 

-
330 
210 
240 
180 
120 
210 
210 
330 

1 Y|n(max/min) a 

>360/160 
240/60 
180/25 

210/110 
210/105 
180/30 

75 
60 
45 
70 
85 
-

"maximum and minimum rotation speeds at which 1 Y["is valid, where more than one criterion exists. 

angle of our rotating models are quantized; the surface is regarded to include the full radial zone 

instead of fractions of zones. Our errors are in line with variations in eigenvalues computed for radial 

modes at a similar stage of development (e.g., Castor 1971). We believe these errors are reasonable 

at the present time because the deduced properties of the stars observed will be inaccurate both 

from the conversion from observed parameters to theoretical parameters and from the uncertainties 

in the effects of inclination on the relation between the observed and intrinsic properties. The model 

and parameter inaccuracies will be far greater than the error in the observed frequencies. Physi

cal uncertainties, particularly in the internal angular momentum distribution, are expected to be 

greater than or equal to the uncertainties in an individual model, particularly for the more rapidly 

rotating stars in which we are interested (v > 200km s _ 1 ) . We believe that being able to compute 

the evolution of the rotation law as the star ages may, at this stage, play a more important role than 

increasing the accuracy of the calculations. Of course, we recognize that improvements in accuracy 

on all fronts are valuable. 

2.6 Conclusions 

In this paper, we have attempted to test the validity of two independent assumptions commonly 

made in calculating stellar oscillation frequencies. These are firstly, that the non-radial modes can 
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Figure 2.8: Standard deviation from a straight line as more points are included for the IQ = 0 and 1 
modes (top) and l0 = 2 and 3 modes (bottom). We take the cut off standard deviation 
to be 4xl0~6 . Symbols are as follows: O - fundamental, • - first harmonic, A - second 
harmonic. Solid lines represent the even modes (0, 2) and dashed lines represent the odd 
modes (1, 3). 



Chapter 2. Pulsations of Uniformly Rotating Stars 50 

X 
X 

0 x 
X 

0 

0 

0 
J ! 1 I 1 1 1 I 

50 100 150 200 250 300 350 400 
Rotation Velocity 

Figure 2.9: Normalized frequencies as calculated with NRO (o) and using an estimate of the pertur
bation theory results (x) for the lo = 2 f mode. 

be modelled using a single YJ™, and secondly, that the modes can be calculated using second order 

perturbation theory out to some limiting (highly uncertain) rotation rate. 

We find that when a single spherical harmonic becomes inaccurate is mode dependent, with it 

failing at lower rotation velocities for higher order modes. The answer is also different depending on 

what property one examines. A single spherical harmonic is sufficient to reproduce frequencies to 

within 1% for rotation velocities up to at least 180 km s~ (0.44f2c), and for some low order modes, 

may even be valid up to 390km s~ (0.85fic)- In contrast, the angular shapes of the eigenfunctions are 

extremely sensitive to rotation, and the assumption fails at a maximum surface equatorial velocity of 

165 km s _ 1 . In most cases, the assumption fails at much lower rotation velocities, typically around 

50-75km s _ 1 . Period differences (large separations) are expected to be of most interest, and these 

are also found to be sensitive to the order of the mode. A single spherical harmonic can accurately 

predict the difference between the fundamental and first harmonic of the lo = 0 and 1 mode up to 

velocities of around 150km s _ (0.37 flc). The higher order modes are very sensitive to rotation, and 
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the assumption fails at velocities of around 25-30 km s_1(0.08 fic)- One interesting consequence 

of the limitations of a single spherical harmonic is the impact it may have on mode identification, 

which is most often based on comparing the variation in pulsation amplitude with color with models 

computed assuming a single spherical harmonic (e.g., Heynderickx, Waelkens & Smeyers 1994). 

We have compared our eigenfrequencies with the relation between eigenfrequency and rotation 

rate predicted by second order perturbation theory. The relationship is followed reasonably well for 

models rotating up to surface rotational velocities of about 400 km s -1for very low order modes. 

The relation fails at lower rotational velocities (approximately 200 km s - 1 or fl/£lc = 0.58) for modes 

with two or three radial nodes. These values are dependent on the difference between the two sets 

of frequencies tolerated. In these calculations, the limits are determined by the properties of the 

rotating stellar models rather than the calculations of the eigenfunctions. 
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Chapter 3 

Effects of Uniform and Differential 
Rotat ion on Stellar Pulsat ions1 

We have investigated the effects of uniform rotation and a specific model for differential rotation on 

the pulsation frequencies of 10 M 0 stellar models. Uniform rotation decreases the frequencies for all 

modes. Differential rotation does not appear to have a significant effect on the frequencies, except 

for the most extreme differentially rotating models. In all cases, the large and small separations 

show the effects of rotation at lower velocities than do the individual frequencies. Unfortunately, to 

a certain extent, differential rotation mimics the effects of more rapid rotation, and only the presence 

of some specific observed frequencies with well identified modes will be able to uniquely constrain 

the internal rotation of pulsating stars. 

3.1 Introduction 

Observationally detected stellar pulsation frequencies can be used to place constraints on stellar 

models, giving us an improved understanding of their interior structure and evolution. The most 

successful application has been the Sun, where the large number of observed modes have placed strict 

constraints on parameters such as the helium abundance (Y) (Basu & Antia, 2004; Antia & Basu, 

2006), the depth of the convection zone (Christensen-Dalsgaard et al., 1989, 1991), and the interior 

angular momentum distribution (Eff-Darwich et al., 2002; Couvidat et al., 2003). Observations 

of pulsation frequencies of other stars continue to improve, particularly through dedicated satellites 

such as WIRE (Hacking et al, 1999), MOST (Walker et al, 2003), CoRoT (Baglin & et al, 2001) and 

Kepler (Basri, Borucki & Koch, 2005) as well as ground-based networks such as STEPHI (Belmonte 

et al., 1993) and WET (Nather et al., 1990). These improved observations, giving us long term 

1The contents of this chapter have been submitted to the Astrophysical Journal. 
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coverage and improved accuracy, are the first steps in enabling other stars to be constrained in a 

similar manner to the Sun. Asteroseismology then, has the potential to answer a number of questions 

about the interior structure of stars throughout the HR diagram. 

One aspect of stellar structure which could be explored using asteroseismology is the internal 

rotation rate. The Sun is known to rotate differentially in the convection zone, with the angular 

velocity approximately linearly increasing with radius, with a constant of proportionality depending 

on the latitude (Schou et al, 1998; Thompson et al, 2003). It is also theoretically possible for stars 

to rotate with angular velocity increasing or decreasing with distance from the rotation axis, and 

there is some evidence that the latter may be true in massive main sequence stars, at least at the 

surface (Stoeckley, 1968). A third possibility is uniform rotation. It has been argued that uniform 

rotation is unrealistic based on observations of the Praesepe and Hyades clusters (Smith, 1971). Of 

course, other, less well structured rotation laws are possible. However, there is little evidence in 

support of a specific rotation law, and the large uncertainties prevent any of the possibilities from 

being ruled out. 

Recently, interferometric observations of Achernar (Domiciano de Souza et al., 2003) found that 

this star is far more oblate than is possible for a uniformly rotating star. This is true because 

uniformly rotating stars reach critical rotation before they have sufficient angular momentum to 

produce such an oblate object. However, Jackson et al. (2005) noted that models in which the 

rotation rate increases inward from the surface can produce the oblateness observed for Achernar 

and still match the observed vs'mi. While further study has proposed that the oblateness may be due 

to a circumstellar envelope (Carcofi et al., 2008), the original conclusion does raise the interesting 

question as to whether stars with rotation laws required to produce such an oblate shape could be 

identified by possible pulsation modes (assuming they exist). We investigate this possibility in this 

paper. 

Differential rotation with rotation rate increasing inwards, as is considered in this paper, will have 

an impact on the deep interior structure of the star, provided the differential rotation is large enough. 

Rapid rotation in the outer layers of a star has little to no effect on the gravitational potential and 
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core structure, as the envelope contains a relatively small fraction of the stellar mass. In fact, many 

early attempts to model rotating stars assumed that the mass in the envelope was negligible and 

that the gravitational potential in this region could be modelled using a Roche potential (Sackmann 

& Anand, 1970). However, it was recognized early on that this assumption was not always valid. 

Efforts to model a wider variety of rotating stars were made through the implementation of the 

self-consistent field (SCF) method (Ostriker & Mark, 1968), or through direct, 2D finite difference 

solutions to Poisson's equation (Clement, 1974, 1978, 1979). These methods allowed stars to be 

modelled with differential rotation, at least under certain circumstances. Concentrating angular 

momentum in the center, unlike uniform rotation, can produce enough distortion to affect the 

core, and consequently the evolution of the star. Only in this case can we produce a model with 

interior properties significantly different from the uniformly rotating model (Sackmann & Anand, 

1970). Even restricting ourselves to this type of differential rotation does not narrow the possibilities 

significantly. The rotation could be shellular, as proposed by Zahn (1992), or cylindrical (conservative 

rotation laws). In this paper, we have focused on conservative rotation laws, either with uniform 

rotation or with rotation rate increasing towards the center of the star. Further discussion of our 

models can be found in §3.2. In §3.3 we consider the eigenfrequencies of rotating models as well as 

the large and small separations in §3.4 and §3.5 respectively. Our conclusions are summarized in 

§3.6. 

3.2 Numerical Models 

The stellar models are computed using the 2D stellar structure code ROTORC (Deupree, 1990, 

1995). The code uses the OPAL opacities (Iglesias & Rogers, 1996) and equation of state (Rogers, 

Swenson & Iglesias, 1996). Here we consider only 10 M© ZAMS models with X=0.7, Z=0.02. These 

models solve the conservation equations of mass, momentum, energy, and hydrogen abundance along 

with Poissons equation for the gravitational potential on a two dimensional finite difference grid with 

the fractional surface equatorial radius and the colatitude as the independent variables. The surface 

equatorial radius is determined by requiring that the integral of the density over the volume of the 



Chapter 3. Effects of Uniform and Differential Rotation on Stellar Pulsations 55 

model equals the stellar mass. The ZAMS models are taken to be time independent and static, except 

for the imposed rotation law, so that the mass, azimuthal momentum, and hydrogen composition 

conservation equations drop out. 

The only change required in the stellar evolution code for nonuniform cylindrical rotation laws 

is the addition of an extra term in the total potential (e.g., Tassoul 2000): 

* = $ - / VL2{w')w'dw' (3.1) 
Jo 

= $ — + / w'2Q.{w') , , 'dw' 
2 J0 dw' 

where fi is the rotation velocity (in radians per second) and w is the distance from the rotation axis 

(xsinO, where x is the fractional surface equatorial radius and 0 is the colatitude). The extra term 

is the last term on the right hand side of the equation. Performing the integral is straightforward for 

an analytically imposed rotation rate distribution in the ZAMS models. The total potential is used 

only to determine the surface location at each latitude by taking the surface to be an equipotential. 

Although defining a total potential requires a conservative rotation law, this is the only way in which 

a conservative rotation law is utilized in the stellar structure code. 

We have constructed uniformly rotating ZAMS models with rotation velocities between 0 and 

360 km s _ 1 , with an approximate spacing of 30 km s - 1 . We have also computed a number of 

differentially rotating models at two values of the surface equatorial rotation velocity, 120 and 240 

km s _ 1 . The differential rotation law is as given by Jackson et al. (2005): 

n^ = irfe? (3-2) 

where /? is a parameter ranging from 0 (uniform rotation) to 2, the maximum allowed for stability. 

The parameters a and fl0 are used to impose the desired surface equatorial velocity and shape of 

the rotation law at small distances from the rotation axis. We have arbitrarily chosen a = 2. Figure 

3.1 shows the rotation rate as a function of distance perpendicular to the rotation axis for a surface 

equatorial rotation velocity of 120 km s _ 1 and a surface equatorial radius for a uniformly rotating 
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Figure 3.1: Rotation law used in differentially rotating models (Eqn. 3.2). Curves show from bottom 
to top the rotation law for /? = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0. for a 
model with a surface equatorial velocity of 120 km s _ 1 . 

model at that speed. Increasing (3 increases the rotation rate close to the the rotation axis, including 

in the core of the star. Increasing angular momentum increases structural changes, and thus the 

structural changes increase with increasing /3. It is expected that increasing rotation rate through 

increasing f3 may in some ways mimic more rapid uniform rotation. 

One major result produced by significant rotation is an appreciable distortion of the surface of the 

model. We present the surface shape for a set of uniformly rotating models with surface equatorial 

velocities ranging from 0 to 360 km s _ 1 in Figure 3.2. For each model the equatorial radius is taken 

to be unity. The ratio between the polar and equatorial radius decreases with increasing rotation, 

as the polar radius decreases slightly while the equatorial radius increases considerably. Differential 

rotation in which the rotation rate increases with decreasing distance from the rotation axis amplifies 

this effect. We present the surface shape for the differentially rotating models in Figure 3.3. The 

solid curves are for a surface equatorial velocity of 120 km s _ 1 , while the dashed curves denote 
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Figure 3.2: Surface shape for uniformly rotating models. The polar radius decreases relative to the 
equatorial radius as rotation increases from 0 km s _ 1 to 360 km s - 1 . 

a surface equatorial velocity of 240 km s _ . As the parameter 0 in Equation 3.2 increases, the 

fractional polar radius decreases. The change in fractional radius with (3 is greatest at the pole and 

decreases towards the equator. Note that the fractional polar radius for a model rotating with a 

surface equatorial velocity of 120 km s _ 1 and a value of /? of 1.8 has nearly the same fractional polar 

radius as a model uniformly rotating at 240 km s~ . 

We have increased the radial resolution of the static models by more than a factor of two over 

that used by Lovekin and Deupree (2008). The intent is to reduce the scatter and uncertainty in 

the pulsation mode calculations, particularly for the large and small separations. By and large this 

has been successful. 

The determination of the pulsational properties of these models is made using the linear adiabatic 

pulsation code developed by Clement (1998). We are restricted to input models with conservative 

rotation laws so that we can write the effective gravity as the derivative of the total potential. 

The input models are spheroids, which allows us to assume a e^ut+m<^ time and azimuthal depen-
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Figure 3.3: Surface shape for differentially rotating models at 120 km s _ 1 (solid) and 240 km s _ 1 

(dashed). As the rotation rate close to the rotation axis increases (increasing (3), the 
polar radius decreases relative to the uniformly rotating case. 

dence. The linearized equations are thus the three components of the momentum equation, the 

linearized mass conservation equation, the adiabatic relation between the density and pressure, and 

the linearized Poissons equation. The dependent variables are the three components of the linear 

displacements (£) , the linear (Eulerian) perturbations of the density (Sp) and pressure (SP), and 

the linear perturbation of the gravitational potential (Sep): 

a2p£, + 2icrp((, x fi) + 9dp- v5P + pv6(f> = 0 (3-3) 

5P = -v -pi 

6P = - r i F V • £ - £ • VF 

\j25(j> = -4irG6p. 

(3-4) 

(3.5) 

(3.6) 

In the above equations, g is the effective gravity, given by the gradient of the total potential, ty and 
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a is the pulsation frequency. With the definitions 

Sp = dP/p - 5$ (3.7) 

and 

2dlnp 
A = c ^ - 1 (3.8) 

where c is the adiabatic sound speed given by c2 = T\P/ p, we can solve Equation 3.5 for V- £ to 

obtain 

V - T = — (Sp + S^+^-g) (3.9) 
Cr 

1 d , , , x 1 d . , . „. im .. 

With some manipulation, the three components of the linearized momentum equation are: 

a2ir + 2ian^sine - ^ = ^(Sp + 5<j> + f • ff) (3.10) 

a% + 2ian^cos9 ~ \ ^ = ^ { h + S4> + 1 • fl) (3.11) 

o-2a = 2io-n(£rsin0 + £ecos0) + r<5p. (3.12) 
rsmO 

Equation 3.4 can be shown to be 

5p=-^ •pt=^{5p + 54>-Ai-~g) (3.13) 

so that Poisson's equation becomes 

v254> = 4wG-^(8p + 5<f>-A£ -~g) (3.14) 

We now have the necessary equations. Equation 3.10 gives us an equation in which the only 
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radial derivative is that of Sp, and we can use Equation 3.12 to eliminate the azimuthal displacement 

(and the imaginary parts). Equation 3.9 provides an expression with the radial derivative of the 

radial displacement. Poisson's equation can be rewritten as two equations, one of which defines a 

new variable as the radial gradient of the gravitational potential perturbation, and the second is 

Poissons equation written in terms of this new variable and the gravitational potential perturbation 

itself. Equation 3.11, with Equation 3.12 substituted to remove the azimuthal displacement, can be 

solved as is because it does not involve any radial derivatives. One does need the radial derivative 

of £0, but this can be obtained by taking the radial derivative of Equation 3.11. All the equations 

are derived assuming a conservative rotation law, but there is nothing in the framework to limit the 

application to uniform rotation. 

Using Equations 3.10, 3.11, 3.12 and 3.14, we can calculate the pulsation properties of the stellar 

models on a 2D finite difference grid. This is done through a change of variables, factoring out the 

behavior of £ r, £#, dp and 6<fi near the boundaries to eliminate singularities. The coefficients of these 

equations can be put in a band-diagonal matrix and solved. NRO can include up to nine angular 

zones in the eigenfunction solution. This gives the solution at N angles, where N is the number of 

angular zones, which can subsequently be decomposed into the contributions of individual spherical 

harmonics through the use of Fourier transforms. Throughout this paper, we have used N = 6. Based 

on the calculations of Lovekin & Deupree (2008a), six spherical harmonics is sufficient to accurately 

calculate the eigenfrequencies for the most rapidly rotating models discussed here. Indeed, we have 

performed a few test calculations with N = 8 and have found that the effect on the frequencies is 

small, typically a few hundredths of a percent. 

As discussed in Lovekin & Deupree (2008a), NRO, combined with stellar structure models from 

R0T0RC, allows us to calculate the pulsation frequencies for rotating stars without making any a 

priori assumptions about the structure, except that the rotation law is conservative for NRO. For 

further discussion of the method of solution used by NRO, refer to Clement (1998) or Lovekin & 

Deupree (2008a). 

With spherical stellar models, the radial and angular components of the perturbations separate, 
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and the angular part can be expressed as a spherical harmonic with specific values of the quantum 

numbers, I and m. 

For rotating stars, the eigenfunction solution is not a single spherical harmonic, and I is not a 

valid quantum number. Indeed, NRO uses I only to specify the parity of the mode being calculated, 

and includes the first k even or odd spherical harmonics, where k is the number of angles included. 

We identify modes using a quantum number l0, which is the I of the mode in the non-rotating model 

to which a given mode can be traced. For spheroids, m remains a valid quantum number. As in 

Lovekin & Deupree (2008a), we restrict ourselves to axisymmetric modes (m = 0) and modes with 

small radial quantum number (n). 

3.3 Relative frequencies 

In this paper we consider low order axisymmetric modes for l0 = 0, 2 and 3 (n = 0-3) and l0 = 1 

(n = 1-4). These modes are expected to have the highest amplitudes and the smallest cancellation 

effects across the visible surface of the star, and are hence expected to be the most easily visible. 

Our structural models cover velocities from 0 to 360 km s _ and for two velocities, 120 and 240 

km s - , we have calculated differentially rotating models with /3 varying from 0 to 2.0. Tracing the 

individual modes becomes very difficult above rotation velocities of 360 km s _ 1 and for some higher 

values of /?, and this represents a practical limit to our study. Although the frequencies can be 

calculated at these velocities, the resulting eigenfunctions are a mix of six spherical harmonics, and 

no single mode dominates. As it is very difficult to reliably assign a value of l0 to these modes, we 

exclude them from our analysis. It is probably feasible to trace the modes accurately, but this could 

require an extremely fine rotational velocity grid (1-5 km s _ ). We decided not to pursue this for 

this exploratory work. For differentially rotating models, the limits are /? = 1.8 for the 120 km s _ 1 

model and f3 = 1.0 for the 240 km s"1 model. Based on the curves shown in Figure 3.1, it appears 

that the limit is related to the angular velocity near the rotation axis. The curve representing (3 

= 1.0 has approximately half the value at the center of the (3 = 2.0 curve. Therefore, if we double 

the velocities everywhere, the limiting /? should move from 1.8 at 120 km s _ 1 to 1.0 at 240 km s~ , 
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which corresponds to approximately the same angular velocity near the rotation axis. 

3.3.1 Uniform Rotation 

The trends produced by tracing a given mode through increases in rotation velocity are illustrated 

in Figure 3.4 for the l0 = 2 mode, which shows the eigenfrequencies normalized by the non-rotating 

frequency for each mode. Overall, the trends we find for frequency agree with those calculated by 

previous work (Lignieres, Rieutord & Reese, 2006). These authors find that the frequencies decrease 

as one increases the rotation rate, with higher frequency modes decreasing more than lower modes. 

As discussed in Lovekin & Deupree (2008a), our results at low to moderate rotation rates are also 

consistent with the frequency trends predicted by second order perturbation theory (see for example, 

Saio 1981). 

We have increased the radial resolution of the outer 30% of the radius of the static models by more 

than a factor of two over that used by Lovekin & Deupree (2008a). This produces a radial zoning 

finer than that currently allowed by the pulsation code, so further increases in radial resolution in the 

2D structure models will only be effective if the pulsation code is modified to allow more radial zones. 

The intent of the modified zoning is to reduce the scatter and uncertainty in the mode calculations 

evident in Lovekin & Deupree (2008a). Figure 3.4 shows that a reasonable estimate of our accuracy 

for the frequencies is a very few tenths of a percent, although there are still a few frequencies, most 

commonly but not exclusively for the higher radial orders and higher rotation rates, which do not fit 

within this limit. One might expect the radial resolution near the rotation axis and at mid latitudes 

to be less than for lower rotation rates because the fractional radius at these latitudes compared to 

the equator is lower. The accuracy of the small separation appears well within a /iHz, while the large 

separation does show variations on the order of one /iHz, particularly at higher rotation velocities 

and for higher radial order modes. This is compatible with the notion that the radial resolution near 

the surface could continue to benefit from refinement. However, these uncertainties do not disguise 

trends in the results, even in the large separation, with respect to rotation rate or the rotation law, 

and we consider these trends significant. 
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Figure 3.4: The first four harmonics of the l0 = 2 mode for a uniformly rotating 10 M Q model as a 
function of rotation rate. The four curves represent the frequencies for the / (diamond), 
Pi (X), P2 (square) and pz (triangle) modes. 

One interesting line of inquiry is whether there is some analog to the period - mean density 

relation which allows interpolation of eigenfrequencies as functions of models and rotation rates. 

Specifically, we have examined if there is a physically meaningful radius which can be used in the 

period - mean density relation 

Q = P\ (3.15) 

(where M and R are in solar units) that would allow Q to be approximately constant as a function of 

rotation rate. The comparatively small changes in the eigenfrequencies shown in Figure 3.4 suggest 

that the surface equatorial radius, with its fairly rapid increase as a function of rotation, will not 

keep Q approximately constant, and it does not. The same is true for an average radius, defined as 

either a straight average or the effective radius required to contain the total volume of the model. 

The polar radius would be more promising because it only slowly varies with rotation rate, but it 

actually decreases slightly as the rotation rate increases. This is the wrong direction to keep Q 

constant because the frequency decreases as well. Because the polar radius decreases slightly and 
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the equatorial radius increases appreciably with increasing rotation, one might guess there would be 

some latitude at which the radius increases at a rate that nearly offsets the rate of period increase. 

This is true, and occurs at a colatitude of 40 degrees. It is not obvious that this has any physical 

significance because it is difficult to associate any specific meaning to the radius at this latitude. 

We present the pulsation constant for two definitions of an effective radius in Figure 3.5. One way 

is to use the radius of a sphere with the same volume as the model. The other uses the radius at 

a colatitude of 40°. For comparison we show a "pulsation constant" that would exist if the mean 

density did not change as a function of rotation rate. Interestingly, the variation in the pulsation 

constant is significantly larger than if the mean density is not changed. 

The frequencies can also be changed by the mass or evolutionary state of the star, producing 

trends that could potentially be confused with rotational effects. We wish to determine how closely 

the frequencies of a rotating model can be mimicked by a non-rotating model. First we calculated 

the Q values for each model in the 10 and 12 MQ non-rotating models. For each mode, we then 
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took the mean of the Q of the two models. We used this average Q for the radial fundamental 

mode and the frequency of the radial fundamental mode for the model rotating at 150 km s - to 

calculate a mean density. This corresponds to the mean density of a non-rotating model of unknown 

mass and radius pulsating in the radial fundamental mode with the same frequency as the 10 M© 

model rotating at 150 km s _ 1 . The mean density found this way and the average Q's for the other 

Z0's can be used to predict the other frequencies of this presumed non-rotating model. When these 

frequencies are compared to the calculated frequencies for the rotating model, the differences are 

significant. Using Q to calculate the frequencies in this way forces the radial fundamental mode to 

have the same frequency, so the differences between frequencies should be solely a result of rotation. 

The frequencies predicted for the l0 = 0 and 2 modes are larger by 1-5%, with the differences 

increasing for higher order modes. At the same time, the frequencies predicted for the l0 = 1 and 

3 modes are smaller, by as much as 15 % for the l0 =1 p\ mode. As the radial order increases, 

the differences between the rotating model and the non-rotating calculation decreases for the l0 = 1 

modes, but increases for the l0 — 3 modes. The size and direction of these trends implies that the 

pulsation spectrum of a rotating model is unlikely to be confused with the pulsation spectrum of a 

more massive non-rotating model. It also suggests that rotation must be included in the calculations 

if observations indicate it might be present even at this moderate amount. 

We have also evolved a single non-rotating model, and compared the ZAMS model with one 

part way through the main sequence evolution (Xc = 0.47). In this case, the frequencies decreased 

sufficiently, even for a model with a large remaining core hydrogen fraction, that confusion seems 

unlikely. 

3.3.2 Differential Rotation 

We have studied the change in the frequencies of 10M© ZAMS models differentially rotating at 120 

km s~ and 240 km s _ 1 . Overall, the frequencies increase for l0 = 0 and 1, and decrease for l0 = 2 

and 3, a trend seen at both 120 km s _ 1 and 240 km s _ 1 . Our results for l0 = 0 are shown in Figure 

3.6 for the fundamental, 1H, 2H and 3H modes for a model rotating at 120 km s _ 1 . In this case, the 
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Figure 3.6: The fundamental and first three overtones of the l0 = 0 mode for a model rotating at 
120 km s _ 1as a function of the differential rotation parameter /3 (see Equation 3.2). The 
four curves represent the frequencies for the fundamental (diamond), 1H (x), 2H (square) 
and 3H (triangle) modes. 

frequency changes are largest for the 3H modes, but are noticeable for all modes by /? « 1. Similar 

trends are found for the other values of l0 considered here. Still, the differences remain relatively 

small, and it seems unlikely that even extreme differential rotation with this surface rotation velocity 

will be detectable using the values of the eigenfrequencies alone. 

The frequency results for the 240 km s_1model, shown in Figure 3.7 for l0 = 0, are slightly 

more promising. Although we were unable to reliably identify modes above j3 = 1.0, the frequencies 

already differ by more than 1% by /? = 1.0 for the 1H mode, and it seems the differences would be 

noticeable by (3 = 0.4. If this trend continues, as seems likely at least for the F and 1H modes, the 

frequency differences should be large enough to be detectable in these more rapidly rotating stars. 

As noted above, for some modes differential rotation causes the frequencies to increase as in Figures 

3.7 and 3.8, while for others the frequencies decrease, as in Figure 3.9. These plots do not include the 

3H mode, as we found that the scatter in this mode remained a significant fraction of the variation, 
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Figure 3.7: Relative frequencies of the l0 = 0 modes versus differential rotation parameter j3 for a 
model rotating at 240 km s - 1 . The curves show the relative frequencies for the funda
mental (diamond), 1H (x) and 2H (square) modes. 

despite the improved radial zoning, and so have chosen not to include it in our discussion. 

The effects of differential rotation compared with uniform rotation are shown in Figure 3.9 for 

the l0 = 2 pi mode. Differential rotation can change the frequencies by about a percent above 

and beyond the difference predicted based on surface equatorial velocity alone. The differences are 

small; about 1% for the most extreme differentially rotating model at 120 km s~ . Based on the 

frequencies we have calculated, it may be possible to discriminate between uniform and this type of 

differential rotation, given the right combination of properly identified frequencies. Since frequencies 

increase relative to the uniformly rotating case for some l0, and decrease for others, these differences 

could be used to constrain the rotation. This would require a star with a few positively identified 

modes, some of which were either l0 = 0 or 1, and some of which were either l0 = 2 or 3. The 

number of modes required and the challenges presented by accurate mode identification in massive 

main sequence stars may make this extremely difficult in practice. 
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Figure 3.9: The relative effects of differential rotation for the IQ = 2 p2 mode. The frequencies for 
differentially rotating models as a function of /? at 120 km s_1and 240 km s_ (squares) 
are superimposed on the uniformly rotating frequencies (diamonds). 
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3.4 Large Separations 

If one considers two stellar models that are in the same evolutionary phase, and appear reasonably 

close to each other in the HR diagram, the frequencies can be approximately determined from the 

relevant pulsation constant, Q. As the mass and radius change with position in the HR diagram, 

so will the frequencies. It is expected that for small changes in mass and radius the frequency 

separations (either frequency differences or ratios) will change, like Q, much more slowly than the 

individual frequencies. As a result, the large and small separations are probably more useful than 

individual frequencies as they are less sensitive to small changes in the models. 

3.4.1 Uni form R o t a t i o n 

The large separation, defined as 

AJ/J = vi,n+i ~ vi,n (3-16) 

can provide information about the outer layers of the stellar envelope. The large separation for 

the l0 = 0 mode is shown as a function of rotation rate in Figure 3.10. We note that the overall 

trend of the large separation for this mode is to decrease as the rotation rate increases. At other l0 

the trend is the same and the large separation decreases for every pair of modes considered. The 

magnitude of the decrease in large separation does increase slightly with increasing l0, as can be 

seen by comparing Figures 3.10 and 3.11. For nonrotating ZAMS models, both the frequencies and 

the large separations decrease as the mass (hence the radius, luminosity and effective temperature) 

increases. The decrease in the large separation occurs not only because the frequencies decrease, 

but also because the period ratios increase for increasing ZAMS mass. However, for stars observed 

approximately equator on, rotation decreases the the perceived luminosity and effective temperature. 

This offset between the perceived luminosity and temperature and the large separation may be 

useful as a rotation discriminant. Of course, stars observed nearly pole on show an increase in 

perceived luminosity and effective temperature, which is in line with the decreasing large separation 

as the rotation rate increases. Any discriminant of rotation may only be a matter of degree for low 
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Figure 3.10: The large separation between the 3H and 2H (square), the 2H and 1H (x), and 1H and 
F modes (diamonds) for modes with l0 = 0. 

inclination objects. 

We noted in section 3.3.1 that the decrease in the frequencies with increasing rotation cannot 

be explained purely by the decrease in the mean density (i.e., a constant Q). The mean density 

decreases faster than the pulsation periods increase as the rotation rate increases. Interestingly, the 

decrease in the large separation for l0 = 0 in Figure 3.10 is almost entirely offset by the mean density 

so that /\V{PQIP)1I2 is nearly constant, as discussed by Ulrich (1986) and Reese et al. (2008). The 

mean density does not offset the steeper decline in the large separation for the l0 = 2 modes shown 

in Figure 3.11. 

3.4.2 Differential Rotation 

The large separations provide information about the region near the surface of the star, while the 

frequencies are more global properties. As discussed above, the separations are less sensitive to 

small changes in the mass or radius of the star, but since they probe the surface region, may provide 

information about changes in this region as a result of rotation. A comparison of Figures 3.2 and 



Chapter 3. Effects of Uniform and Differential Rotation on Stellar Pulsations 71 

310 

305 

300 

295 

a, 290* 
c 

1 285, 
Q. 
% 
to 
2> 280 
2 

275 

270 

265 

260 

0 50 100 150 200 250 300 350 400 
Equatorial Velocity (km/s) 

Figure 3.11: The large separation for the l0 — 2 modes as a function of rotation velocity. Shown are 
the separations between the p\ and / modes (diamonds), the pi and p\ modes (x) and 
the p3 and p^ modes (squares). 

3.3 shows that the polar radius is significantly more affected by differential rotation than the radius 

at lower latitudes. This kind of effect may be detectable using the large separations. Indeed, based 

on the results in the previous section, we expect there to be significant differences in the period 

differences, as we have found that differential rotation can sometimes introduce a significant shift in 

only one or two of the harmonics. 

The large separation for the l0 = 0 modes of a differentially rotating model with surface equatorial 

velocity of 120 km s~ are shown in Figure 3.12. The large separations shown in this plot show very 

little change with increasing j3, much less than the differences shown in Figure 3.10. The same lack of 

variation is seen for all modes. Given that the large separation probes the surface regions, this might 

be regarded as somewhat surprising because changing the j3 does change the surface configuration, 

particularly near the rotation axis. 

At 240 km s _ 1 , the large separations, shown in Figure 3.13, are again quite constant over the 

region shown. Most separations either remain constant or show a slight increase, at least to /? = 0.6, 
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Figure 3.12: The large separation for the l0 = 0 modes of a differentially rotating model with surface 
equatorial velocity of 120 km s _ 1 , plotted as a function of differential rotation parameter 
/?. Symbols are the same as Figure 3.10. 

at which point some of the higher order separations decrease slightly. Again, this is different from 

the trend seen in the uniformly rotating models. Particularly at high j3, the separations moving in 

different directions may allow constraints to be placed on observed stars. The differences begin to 

become noticeable at (3 « 0.6 for most of the high order modes considered. However, for most modes 

the large separation never differs by more than a few pHz. As for the frequencies, it seems that the 

large separations are unlikely to produce any very refined constraints on the internal rotation rate, 

at least for this particular rotation law. 

3.5 Small Separation 

Asymptotic theory (Tassoul, 1980), which predicts that the large separation should be approximately 

constant as n gets large, also predicts near degeneracy between modes with the same value of n+l/2: 

vl,n — vl+2,n-l (3.17) 
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Figure 3.13: The large separation of the l0 = 0 modes for a differentially rotating model with surface 
equatorial velocity of 240 km s~ . Symbols are the same as Figure 3.10. 

The deviations from this degeneracy are defined as the small separation: 

Av fR dc dr ,., ns ^V f dcdr 
dl,n = Vl,n - Vl+2,n-l =* -(4Z +6)—= / 

47r 2 f ; n y 0 dr r 
(3.18) 

where c is the sound speed. The sound speed changes most rapidly in the core of the star, so the 

integral on the right hand side of Equation 3.18, and hence the small separation, is dominated by 

the structure in the core. 

3.5.1 Uniform Rotation 

At slow uniform rotation, the size and shape of the convective core is nearly unaltered by the rotation, 

and one would expect the effects on the small separation to be minimal. Figure 3.14 shows this to 

be true, but also shows that the small separation for higher n increases markedly with rotation rate 

once the rotation exceeds approximately 150 km s - 1 . There are slight changes to both the shape 

and relative size of the convective core with rotation, although the absolute mass and radius of the 
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Figure 3.14: Small separation for the l0 = 0 and 2 modes as a function of surface equatorial velocity. 
Shown are the separations between the l0 = 0, 3H - l0 = 2, P2 modes (squares), l0 = 0, 
2H - 1 0 = 2, pi modes (x) and l0 = 0, 1H - l0 = 2, / modes (diamonds). 

core change only slightly. It is not obvious why the small separation increases so markedly. 

Small separations are frequently used as probes of the core structure of stars, and can be used 

to constrain overshooting and core composition (Soriano & Vauclair, 2008). Their results indicate 

that convective core overshooting causes a slight decrease in the small separations, with the effect 

becoming more pronounced as the star evolves. This slight trend is opposite to that produced by at 

least moderate rotation, which appreciably increases the small separation. Clearly, this is a situation 

in which caution must be exercised when using observed modes to constrain conditions deep in the 

stellar interior. 

3.5.2 Differential R o t a t i o n 

For differentially rotating models, the overall trend is the same, with small separations increasing 

with increasing differential rotation. However, Figures 3.15 and 3.16 show that the variation in 

small separation is much less than for uniformly rotating models. The trends are consistent with 
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Figure 3.15: Small separations for the even modes for a differentially rotating model with surface 
equatorial velocity of 120 km s _ 1 , plotted as a function of differential rotation parameter 
j3. Symbols are defined as in Figure 3.14. 

the relationship between the effects of /3 and those of increasing the uniform rotation rate as shown 

in Figure 3.9. The effects of increasing (3 on the convective core mimic to some extent those of 

increasing the uniform rotation rate, although high values of (3 do make the convective core more 

oblate. The different effects of /3 on the large and small separations is understandable in that 

increasing (5 increases the rotation and its effects near the rotation axis, and this certainly includes 

the convective core. However, this trend of increasing ji producing similar trends to increasing 

uniform rotation rate does not give us confidence that we have a useful tool for diagnosing a rotation 

law of the kind we have considered through the small separation. 

3.6 C o n c l u s i o n 

We have investigated the effects of uniform and differential rotation on pulsational eigenfrequencies. 

For uniformly rotating models, we have found that the frequencies decrease as rotation rate increases 
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Figure 3.16: Small separations for the even modes of a differentially rotating model with surface 
equatorial velocity of 240 km s _ 1 . Symbols are defined as in Figure 3.14. 

for all values of l0 and n considered here, although the rate of decrease varies with the mode in 

question. While this frequency behavior is expected assuming the period-mean density relation 

applies, the frequency changes are much smaller than the period-mean density would suggest. We 

do find a pulsation constant being approximately constant if we use the surface radius at a colatitude 

of about 40° in the period-mean density relation, although this radius does not represent the mean 

density. 

For the differential rotation law considered here, we find the frequencies at a given velocity may 

either increase or decrease, depending on l0, with increasing differential rotation, relative to the 

uniformly rotating model. However, the overall effects in all cases are comparatively small, with 

maximum differences typically on the order of 1% when compared to the uniformly rotating case. 

Uniform rotation decreases the large separation by several juHz (< 10) over the entire range of 

rotation (0 - 360 km s_ 1) considered here. The large separation was virtually unchanged (< 1 /xHz) 

from that of uniform rotation for the range of differential rotation parameters considered here, despite 
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the noticeable change in the surface shape. Although this change in shape is noticeable, it is still 

considerably smaller than the change produced by uniform rotation. Both uniform and differential 

rotation increase the small separation. The small separation can change markedly over the range 

of uniform rotation considered, while the dependence of the small separation on the rotation profile 

is more modest but not inconsistent with the other effects produced when comparing uniform and 

differential rotation. The effects of rotation on the frequencies and separations are generally large 

enough that rotation must be considered in the asteroseismology of these upper main sequence stars. 

While the precise rotation rate at which one must be concerned with rotation depends on the level 

of accuracy achievable, it is certainly no larger than 100 km s _ 1 for our 10 M@ ZAMS models. 

Although we have shown there can be significant differences in the pulsation properties of rotating 

stars, it is not clear that these results can actually be used to constrain the interior rotation rate. 

Given the possible combinations of effects from rotation rate and distribution, the mass of the star, 

convective overshoot, evolutionary stage, etc, it seems unlikely that pulsation properties will give 

a unique solution, particularly if the number of observed modes is modest or cannot be properly 

identified. However, we have found that some combinations of modes constrain some of these 

properties. 
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Chapter 4 

Effects of Rotation on Photometric 
Mode Identification of Pulsating 
Stars1 

Mode identification is essential for observed pulsation frequencies to be used to study stellar interiors. 

In this paper we investigate the effects of rotation on photometric mode identification. We use 2D 

modelling of stellar structure and pulsation, combined with plane parallel NLTE model atmospheres 

to calculate photometric amplitudes for 10M© ZAMS models with rotation rates from 0 to 240 

km s~ . We have examined the effects of changing inclination angle on the photometric amplitudes. 

In non-rotating stars, the effects of changing inclination angle are noticeable, but small enough that 

they are unlikely to affect mode identification. In stars rotating moderately rapidly, however, we find 

the inclination effects in some modes are sufficiently large that the relative amplitude as a function 

of wavelength is not unique. It may be impossible to ever rule out I = 2 pulsation for uniformly 

rotating stars. For l0 ^ 0, these results are unaffected by the radial order of the mode. The l0 = 0 

mode shows larger variation in photometric amplitudes for the 1H mode than for the F mode, but 

not large enough to cause additional ambiguity in mode identification. 

4.1 Int ro duct ion 

Asteroseismology has great potential to add to our understanding of the interior structure of stars, 

but in order to utilize this, we must be able to accurately identify the observed modes. A complete 

mode identification would include all three quantum numbers (radial order n, latitudinal order I, 

and azimuthal order m). In solar type pulsators, a large number of modes can be observed, and 

regular patterns in the frequency spectrum can help with mode identification (Daszyriska-Daskiwicz, 

1The contents of this chapter have been submitted to the Astrophysical Journal. 
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2008). Unfortunately, for more massive main sequence pulsators, such as 6 Scuti and (3 Cephei stars, 

only a few modes are observed, and other approaches to mode identification must be used. This can 

be done using the line profile variations in spectroscopic observations (Balona, 1986a,b, 1987, 1989). 

These spectroscopic observations, however, require very high dispersion spectra with a high signal-

to-noise ratio (Balona & Evers, 1999). This type of spectroscopy is far more time consuming than 

photometric observations, so reliable mode identification techniques using photometric observations 

would be advantageous. 

A method for identifying the degree (I) of a mode from bolometric observations was originally 

developed by Dziembowski & Goode (1992), and later extended to multicolor photometry by Stam

ford & Watson (1981). This technique has since been expanded upon and used by several groups 

(Watson, 1988; Cugier et al, 1994; Heynderickx et al, 1994). These authors derived an expression 

for the photometric amplitude of a pulsating star as a function of wavelength, I and m. Using 

this technique for a variety of theoretical and observational spectra, it is possible to determine /, 

as the amplitude will vary as a function of wavelength, with the pattern of variation depending 

on I. It is also possible to perform photometric mode identification using color-phase observations. 

However, for (3 Cephei stars, the phase differences are small, and the wavelength data provide more 

information (Balona & Evers, 1999). 

Photometric mode identification has the potential to be particularly useful for main sequence 

pulsators, such as (3 Cephei stars. Observationally, these stars are often multi-periodic, and these are 

thought to be low degree modes (Stankov & Handler, 2005). A few /? Cephei stars are also known to 

be rapid rotators (Slettebak, 1949), an effect neglected by most previous work. Rotation has been 

considered by Daszyhska-Daskiwicz et al. (2002), although they focused on the effects produced by 

coupling of modes in rotating stars. Rotation is known to affect the variation of eigenfunctions across 

the surface of the star (Clement, 1998; Lovekin & Deupree, 2008a). As rotation increases, higher 

order spherical harmonics begin to make important contributions to the shape of the eigenfunction. 

Thus, the horizontal variation of an / = 0 mode in the non rotating star can look like an I = 2 mode 

in a sufficiently rapidly rotating model. How much this effect changes the photometric amplitudes 
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used in mode identification is unknown. 

In this paper, we use a 2D stellar structure code to calculate accurate stellar models, including 

deformation produced by rotation at velocities from 0 to 240 km s _ 1 . Here, we use the structure 

models and pulsation frequencies for I < 3 calculated by Lovekin & Deupree (2008b). We have 

applied these perturbations to our stellar models and calculated spectra for the perturbed models 

at maximum compression and expansion. These spectra were combined with response functions 

for various filter systems to calculate photometric amplitudes for pulsation modes. Our numerical 

models are discussed in more detail in §4.2. The effects of stellar inclination are discussed in §4.3, and 

the effects of rotation are discussed in §4.4. These effects are considered for higher order harmonics 

in §4.5, and our conclusions are summarized in §4.6. 

4.2 Numerical Methods 

Our stellar models are calculated using the 2D stellar evolution code ROTORC (Deupree, 1990, 1995), 

allowing us to self-consistently model the surface and structure of the star for rotation rates from 

zero up to near-critical rotation. This code has recently been updated to allow for the calculation of 

differentially rotating models (Gillich et at, 2008). As in Lovekin & Deupree (2008a,b), we focus on 

uniformly rotating 10 M s ZAMS models with X=0.7, Z=0.02. We use the OPAL opacities (Iglesias 

& Rogers, 1996) and equation of state (Rogers, Swenson & Iglesias, 1996) in these calculations. These 

models are fully 2D, with 10 angular zones from pole to equator and up to 581 radial zones. Using 

these models, we calculated uniformly rotating stellar models with surface equatorial velocities 0-360 

km s~ (Lovekin & Deupree, 2008b). Here we will utilize uniformly rotating models with surface 

equatorial velocities of 0, 120 and 240 km s~ from that work. 

We calculated linear perturbations to the static structure with a 2D linear, adiabatic pulsation 

code, NRO (Clement, 1998). This code solves the linear adiabatic perturbation equations on a 2D 

spherical grid. The solution is expressed in terms of 5 variables, related to the radial and latitudinal 

displacement perturbation, the pressure and gravitational potential perturbations, and the radial 

derivative of the gravitational potential perturbation. In this way, all of the relevant linearized 
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equations can be expressed in the general form 

drVi = f{yi,dryj^i,deyi). (4.1) 

The coefficients of these perturbed equations can be put in a band-diagonal matrix and solved. NRO 

can include up to nine angular zones in the eigenfunction solution, performing one radial integration 

for each angle included. This gives the solution at N angles, which can subsequently be decomposed 

into the contributions of individual spherical harmonics through the use of Fourier transforms. 

Throughout this paper, we have used N = 6. Based on the calculations of Lovekin & Deupree (2008a), 

six spherical harmonics are sufficient to accurately calculate the eigenfrequencies for the most rapidly 

rotating models discussed here. We have calculated photometric amplitudes for axisymmetric (m = 

0) modes with l0 < 3. 

One of the effects of rotation is that a given mode is no longer composed of a single spherical 

harmonic, but a linear combination of several. As such, the angular quantum number I is no longer 

valid as a way of identifying modes. However, a given mode of a rotating model can be traced 

backwards to a specific mode in the equivalent non-rotating model. We designate modes using l0, 

the I value of the specific mode in the non-rotating model. 

The perturbations calculated by NRD are applied to the surface properties ( T c / / , R(0), log<?e//) 

calculated by ROTORC. We use the scaled Lagrangian displacement perturbations (fr, £#) and Eulerian 

perturbation to the gravitational potential. These perturbations are then simply scaled to physical 

units before being added to the static stellar structure variables. The Eulerian pressure perturbation 

is calculated from the displacement perturbation 

M> = - r iP(v-o-£-vP, (4.2) 

and the Lagrangian temperature perturbation is calculated from the pressure perturbation using 

5P__ T2-IST 
(4.3) 
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where Ti and T2 relate to the adiabatic response of the pressure to changes in the density and 

temperature respectively (eg., Cox & Giuli 1968). We solve for the Eulerian temperature perturba

tion and apply it to the static temperature. Following Stamford & Watson (1981) and Heynderickx 

et al. (1994), we have assumed the temperature perturbation is equal to the effective temperature 

perturbation, 6T/T = 5Teff/Teff at the appropriate optical depth (T = 2/3). Dupret et al. (2002) 

have taken non-adiabatic effects into account and have shown that this is not necessarily true, par

ticularly deep within the atmosphere. This is done by assuming that the atmosphere remains in 

radiative equilibrium rather than using the diffusion approximation. This improves the treatment of 

the temperature in the atmosphere. Our static models use the Eddington approximation, and lack 

the zoning at the surface to be able to effectively apply the approach suggested by Dupret et al. 

(2002). Because we are making a relative comparison, we believe the effects of using the adiabatic 

approximation should not be too severe. 

We have calculated the surface properties of the perturbed structure model at maximum com

pression and expansion. The pulsation code, NRO, is a linear code, and so does not provide any 

information on the amplitude of the pulsations. We have chosen to scale the amplitudes by fixing 

the value of Sr/r at the pole. Typically, we set 5r/r = 0.01, although for some models this has been 

raised or lowered to keep the perturbations large enough to be noticeable and yet still small enough 

to be within the linear regime. The variation in the surface properties of the perturbed models can 

be used to generate spectral energy distributions (SEDs) using a spectral synthesis code, described 

briefly below. A more detailed discussion can be found in Lovekin (2005) and Lovekin et al. (2006). 

This code takes plane-parallel NLTE atmospheres produced by the PHOENIX code (Hauschildt & 

Baron, 1999) and calculates a synthetic SED for a deformed star. We then use the log of the ratio of 

the fluxes at these two phases in selected photometric filters to calculate the photometric amplitudes. 

These photometric amplitudes are normalized by the amplitude in the bluest filter. 

Our model atmospheres are generated using PHOENIX, which self-consistently solves the radiative 

transfer equation and the NLTE statistical equilibrium (SE) rate equations for many species and 

overlapping transitions (Hauschildt & Baron, 1999). Short et al. (1999) have greatly increased the 



Chapter 4. Effects of Rotation on Photometric Mode Identification 83 

number of species and ionization stages treated in SE by PHOENIX. Atomic data for the energy 

levels and b-b transitions have been taken from Kurucz (1994) and Kurucz & Bell (1995). We 

have generated the resulting intensity as a function of angle relative to the surface normal for the 

wavelength region 3000-10000 A with AA = 0.02 A, giving a resolution of R = A/AA = 150 000. 

The surface variations as a function of colatitude, from R0T0RC and NR0, and the intensity grid 

produced by PHOENIX are used as inputs for our atmospheric integrator code (CLIC). We divide 

the surface of the model into a mesh of 200 colatitudinal (0) zones and 400 longitudinal (<f>) zones. 

For each mesh zone, the effective temperature and surface gravity are determined from the R0T0RC 

model and the perturbations. The appropriate atmospheric intensities are read in from a grid of 

models in T e / / and \ogg. CLIC then interpolates among these models to determine the intensity in 

the direction of the observer from each grid zone. To determine the total flux, we must evaluate the 

integral 

where 6 is the colatitudinal coordinate, 4> is the longitudinal coordinate, £(6, (f>) is the angle between 

the local surface normal and the line of sight to the observer, d is the distance to the object, dAproj 

is the projected surface area element as seen from the direction of the observer, I\ is the intensity 

at a given wavelength, and F\ is the flux at a given wavelength. For more details on the method of 

solution of this integral, refer to Lovekin et al. (2006). 

The output of this integration is a set of 10 spectra at inclinations from i = 0 to 90°. Although 

CLIC is capable of calculating Doppler broadening, the effects are not important when considering 

the flux in broad-band filters, as is done here. A test comparing the flux ratio in one filter with and 

without Doppler shifting showed no difference, so we have neglected Doppler effects in the spectra 

used in this work. 

The uncertainty in our spectral calculation is approximately 6 %, and is dominated by numerical 

errors in the interpolation. This error corresponds to a difference in the logarithmic flux ratio of 

0.025. We have neglected amplitude curves with an amplitude less than this in the bluest filter. 

Amplitudes this low were most commonly found for the l0 = 2 modes, where typically only a few 
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amplitude curves are included. The l0 = 1 and 3 modes, when viewed close to equator on also 

have very low amplitudes, as the models have nearly the same spectra at maximum expansion and 

compression because of the asymmetry about the equator. 

We have calculated the photometric pulsation amplitude at maximum compression and expansion 

for the Walraven (Walraven & Walraven, 1960), Stromgren (Stromgren, 1956), and Johnson (John

son, 1965) filter systems. The filter response functions for these filter systems were taken from the 

Asiago Database on Photometric Systems (ADPS) (Moro & Munari, 2000). For simplicity, we have 

chosen to show results in the Walraven filter systems only. Previous research (eg., Heynderickx et 

aZ.1994) seems to indicate that this filter system provides more information for mode identification. 

4.3 Inclination Effects 

Using the codes described above, we have calculated photometric amplitudes as a function of in

clination of the star. For non-rotating stars of course, there is no preferred axis, as the star is 

spherically symmetric. However, non-radial pulsation does introduce a distinct axis to the stellar 

model. This is still somewhat arbitrary, as a given spherical harmonic with one axis can be repre

sented mathematically in terms of a linear combination of spherical harmonics with a different axis. 

As discussed in Heynderickx et al. (1994), a particular choice of polar axis does not imply a particu

lar pulsation axis, and so they were justified in choosing the polar axis to coincide with the direction 

to the observer. Throughout their paper, they consider pure spherical harmonics, and do not take 

into account the effect of changing the viewing angle on the resulting photometric amplitudes. We 

assume the pulsation axis coincides with rotation axis, but the direction to the observer is free to 

change. The effects of this change are addressed in this section. 

4.3.1 Non-Rotating Model 

The angle at which a model is viewed will produce changes in the observed photometric amplitudes, 

the exact amount depending on the mode. As a first step towards disentangling this relationship, 

we first consider the dependence of the relative photometric amplitudes on the changing angle of 
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inclination in a non-rotating, pulsating 10 M© ZAMS model. In this case, the range of photometric 

amplitudes produced by changing inclination is small for l0 = 0-2, as shown for the Walraven filter 

system in Figure 4.1. For the radial mode, as one might expect, there are no differences at all as 

a function of inclination. At l0 = 1, there are slight differences, but the effects are less than 0.5% 

at the reddest wavelengths. This is small enough that they are unlikely to cause any confusion, or 

even be noticeable when comparing theory and observations in practical situations. For the l0 = 2 

mode, the differences are larger, around 2%, which may be large enough to be detectable, but are 

unlikely to cause any confusion with other modes. Figure 4.1 only shows the l0 = 2 modes for i = 

70, 80 and 90°, as at lower inclinations the flux ratios were too low to be reliable (< 0.025), based 

on previous calculations (Gillich et al., 2008). Including all inclinations would increase the variation 

in photometric amplitudes, but the variation remains small enough to avoid ambiguity in mode 

identification. The l0 — 3 mode also shows significant variation with inclination, with variation as 

large as that between l0 = 0 and 1. However, the slope of this curve at the reddest wavelengths 

should be sufficient to distinguish it from these modes. Figure 4.1 shows the l0 = 3 mode at i 

= 0 and 70°, rather than at pole and equator, as the equator appears to be a special case. For 

the odd modes, which are antisymmetrical at the equator, the two spectra 180° out of phase are 

nearly identical because the northern hemisphere at maximum compression looks like the southern 

hemisphere at maximum expansion. The resulting differences in the photometric amplitude should 

be zero. Numerically, the cancellation is not quite exact, but the resulting ratios are too small to 

be reliable. Thus, odd modes viewed nearly equator on (i ~ 90°) are not considered further. It 

appears that for non-rotating stars, the inclination effects, while present, do not pose a problem for 

photometric mode identification. This is true for all three filter systems considered. 

We have compared our results for the Walraven filters with the results of Heynderickx et al. 

(1994) for (3 Cephei stars. The primary difference in approach is that their calculations were done 

using LTE atmospheres, while our calculations use non-LTE atmospheres. Overall, the trends for 

the l0 = 0, 1 and 2 modes look quite similar. At the reddest wavelengths (V band), our amplitudes 

are within a few percent of those found by Heynderickx et al. (1994). There are differences at 
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Figure 4.1: The Walraven photometric amplitudes for a non-rotating 10 M© model. Shown are the 
maximum and minimum amplitudes as a function of inclination for (from top to bottom) 
lo = 0, l0 = 1, l0 = 2 at i = 70, 80 and 90° (see text for discussion) and l0 = 3. For 
non-rotating stars, the inclination effects are generally small, and are unlikely to cause 
any confusion in photometric mode identification. 
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bluer wavelengths. We find a slightly lower amplitude in the U band (3670 A), about 5 96. The 

largest difference occurs in the B band, centered at 4295 A. In this filter, we find our amplitudes 

are about 15 % lower than the Heynderickx et al. (1994) results. This region of a NLTE spectrum 

for a uniformly rotating stellar model with Tejf ~ 25800 K is shown in Figure 4.2. This region is 

dominated by H-7. Previous work (Lovekin et al., 2006) indicates that we have sufficient resolution 

over the stellar model surface, as well as in temperature to produce accurate synthetic spectra, so 

we do not believe resolution is the source of the differences. Since the differences in this wavelength 

region occur in both rotating and non-rotating stars, it is likely not a result of rotation. It is 

possible that the differences arise from differences between LTE and NLTE spectral calculations. In 

our NLTE models, the lower atomic energy level which forms the line is less populated than in LTE, 

so there will be less absorption, and hence more flux in the NLTE models. For photometric mode 

identification, we look at the ratio of two spectra, so systematic differences between LTE and NLTE 

should have no effect. If the amount of absorption changes with temperature, this could explain the 

differences between the NLTE and the LTE results. Indeed, we have found that as the temperature 

increases, the departure coefficients increase, and the level populations become closer to the LTE 

populations. This means that lines produced at lower temperatures will have more flux than the 

LTE model at the same temperature. The difference in flux between nonLTE and LTE will increase 

as the temperature decreases (models at higher temperatures will be closer to the LTE flux than 

models at lower temperatures). When the ratio of the fluxes is considered, the ratio of the nonLTE 

fluxes will be lower than the ratio of the LTE fluxes. This is indeed what we find when we compare 

our amplitude ratios in the Walraven V band with those calculated by Heynderickx et al. (1994). 

Also visible in this region are a few emission lines, which would not be present in the LTE spectra. 

The l0 = 3 mode was omitted by Heynderickx et al. (1994), who found that "the wavelength 

dependence for I = 3 is markedly different from the wavelength dependence for the other values of 

Z". This trend appears in our results as well. Their observations showed no stars with wavelength 

dependence compatible with that of the l0 = 3 modes, and so they did not include these curves in 

their analysis. 
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Figure 4.2: The NLTE spectrum in the region of the Walraven B band at a temperature of 25800 
K. Overplotted is the filter response function for the B band. 
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4.3.2 Uniformly Rota t ing Models 

As rotation is introduced, the initially pure spherical harmonic pulsation modes become contami

nated by spherical harmonics of higher or lower I. One of the results of this will be to increase the 

variation in photometric amplitudes produced by changing inclination angle. This has the potential 

to make mode identification more complicated, as a given mode could have a range of photometric 

amplitudes, and could potentially overlap the patterns of other modes. 

At 120 km s _ 1 (0.3QC, where flc is the rotation rate at which gravity is balanced by the centrifugal 

force at the equator), the spread in photometric amplitude produced by changing the angle of 

inclination shown in Figure 4.3 is generally not much larger than in the non-rotating case. For 

the l0 = 0 and 1 modes, there is a slight variation in amplitude, about 2 % and 1 % respectively 

in the Walraven filters. In some filter systems, this spread may be large enough to be noticeable 

when comparing theory and observations, but it is not large enough to cause any ambiguity in mode 

identification. 

The variation in amplitude as a function of inclination for the l0 = 2 and 3 modes is much larger. 

For the l0 = 2 mode, the normalized photometric amplitude as a function of inclination ranges from 

0.5 to 0.7 at the redder wavelengths, which covers nearly the entire photometric amplitude variation 

of the other modes. Observed close to pole on, the l0 = 2 mode would be mistaken for a l0 = 0 

mode, but viewed closer to equator on, this mode would mimic an l0 = 1 mode. The agreement 

between the l0 = 2 and l0 = 1 modes is closest for % = 60°, at which inclination the observer is 

looking almost directly at the node for this particular l0 = 2 mode (0 ~ 53°). 

The l0 = 3 mode, although it also covers a large range of amplitudes does not appear likely to 

produce confusion, because the photometric amplitudes as a function of wavelength have a different 

slope from the other three modes considered here, as shown in the bottom panel of Figure 4.3. At 

intermediate inclinations (i = 40°), the amplitude ratios for the l0 = 3 mode are approximately 

parallel to the l0 = 0 and 1, but the amplitude ratio is sufficiently higher than the l0 = 0 and lower 

than the l0 = 1 to keep the modes distinct. This is shown in Figure 4.3 for the Walraven filters, but 

occurs in all three filter systems. 
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Figure 4.3: The maximum range in inclination of the Walraven photometric amplitudes for a 10 
MQ model uniformly rotating at 120 km s_1 . Shown are the range of amplitude ratios 
produced by changing inclination angle for, from top to bottom, the l0 = 0, l0 = 1, l0 

= 2 and l0 = 3 modes. Although the variation in both the l0 = 2 and 3 modes overlaps 
with the l0 = 0 and 1 modes, only the l0 = 2 could be confused, as the l0 = 3 mode has 
a very different slope. 
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At 240 km s ~ \ the results are quite similar to those at 120 km s _ 1 . The spread in photometric 

amplitude with inclination has increased, particularly for the l0 = 0 mode, up to nearly 8 %. As 

can be seen from Figure 4.4, it is only at this velocity that the inclination effects become significant 

for the l0 = 0 mode. The horizontal variation of the radial eigenfunction for the l0 = 0 mode 

has become significantly contaimnated with higher order spherical harmonics, and the pulsational 

amplitude differs by as much as 20 % relative to the pure spherical harmonic Lovekin & Deupree 

(2008a), and even differs by as much as 10-20 % relative to the l0 = 0 mode at 120 km s~ . Given 

this degree of horizontal variation in the eigenfunction, it is not at all surprising that there is a large 

amount of variation with inclination relative to the more slowly rotating cases. 

The l0 = 0 and 1 modes are still sufficiently separated in amplitude that confusion between them 

seems unlikely. There is increased overlap between the l0 = 0 and 2 modes as the variation in the l0 

= 0 modes has increased. As for the 120 km s _ 1 model, the l0 — 1 and 3 modes overlap, but unlike 

at 120 km s - 1 model, at 240 km s _ 1 , there is the possibility of misidentification because the shapes 

of the relative amplitude curves are similar. The l0 = 3 mode viewed close to equator on (i = 80°) 

is very close to the l0 = 1 mode. At lower inclinations, the l0 = 3 amplitudes remain in the same 

range, but, as for the 120 km s~ model, the shape of the curve differs from that of the l0 = 1 mode, 

so misidentification seems unlikely. As for the other two velocities considered, these trends, shown 

in Figure 4.4, are common to all three filter systems. 

As with the model at 120 km s _ 1 , it appears that the l0 = 2 mode cannot be distinguished from 

the other modes, except perhaps in the case of a nearly pole on l0 = 3 pulsator. At the more rapid 

rotation rate however, even the l0 = 3 become subject to ambiguity at some inclinations. 

4.4 Rotational Effects 

As discussed above, rotation increases the variation in photometric amplitudes produced by changing 

the inclination angle of the star. This is more pronounced in some modes than in others. For 

example, the l0 = 1 mode shows very little variation with changing inclination angle for the rotation 

rates considered here. In contrast, the amplitude of the l0 = 2 mode can vary by nearly 20 % 
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Figure 4.4: The Walraven photometric amplitudes for a 10 M© model uniformly rotating at 240 
km s~ . Shown are the maximum and minimum amplitude ratios for (from top to 
bottom) the l0 = 0, l0 = 1, l0 = 2 and l0 = 3 modes. In this case, there is more scope 
for confusion of mode identification, as the variation in the l0 = 2 mode overlaps with 
all other modes, and the amplitude curve of the l0 — 3 mode now follows that of the l0 

= 1 mode at high inclinations. 
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Figure 4.5: Top: The photometric amplitude for the l0 = 0 mode in the nonrotating model. Bottom: 
Maximum and minimum variation in photometric amplitude relative to the nonrotating 
model for the l0 mode at 120 km s _ 1 (solid) and 240 km s - (dot-dashed). 

with changes in inclination angle. The question remains: for a given inclination and mode, how 

does the photometric amplitude vary with stellar rotation rate? If the variation in photometric 

amplitude is large enough with respect to stellar rotation, it may be possible to use photometric mode 

identification to constrain stellar rotation. Or, depending on the pattern of variation, an increased 

rotation rate may result in misidentification of modes using photometric techniques. Although we 

will attempt to discuss the effects of rotation as independent from inclination, in reality the two 

effects are tightly coupled, and both must be included to understand the resulting photometric 

amplitudes. 

The top panel of Figure 4.5 shows the photometric amplitude for the l0 = 0 mode in the nonrotat

ing model, while the bottom panel shows the maximum and minimum variation for models rotating 

at 120 and 240 km s~ . This figure makes it clear that faster rotation rates increase the variation 

in photometric amplitudes that could be observed for a given mode. Even with this increase, the 

amplitude variations of the l0 = 0 and 1 modes do not overlap, as illustrated in Figure 4.6. 
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Figure 4.6: Walraven photometric amplitudes of the l0 = 0 (solid) and 1 (dashed) modes at 240 
km s~ . Although the range covered by the l0 = 0 mode has increased significantly, the 
l0 = 1 mode does not vary appreciably with inclination, and the two remain distinct. 

As we can decompose the discrete finite difference variations in the horizontal variation of the 

displacements into six component spherical harmonics, we can easily determine the relative con

tribution of each spherical harmonic. We do this based on the horizontal variation in the radial 

displacement. At 120 km s~ , the l0 = 0 and 1 modes are still dominated by the I = 0 and 1 spher

ical harmonics, with relative contributions of 89 and 87 % respectively. As illustrated in Figure 4.7, 

this is enough to slightly distort the mode, but the horizontal variations are still easily recognizable. 

The contribution from the next most important spherical harmonic is the I = 2 (6.1 %) and the I = 

5 (8.7 %) respectively. At 240 km s _ 1 , one mode still remains easily identifiable as dominant, with 

relative contributions of 70 % and 59 % for the I = 0 and 1 spherical harmonics respectively. The 

next most important contribution to these two modes comes from the I = 4 (13 %) and I = 7 (16 

%) spherical harmonic, respectively. Although the shapes are now very distorted, (see Figure 4.8,) 

this is not enough to significantly alter the photometric amplitudes. 

Although the photometric amplitude ratio for the l0 = 1 mode shows an increased range at 240 
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Figure 4.7: The horizontal variation of the radial eigenfunction for a model rotating at 120 km s _ 1 . 
Shown are the l0 = 0 (top left), l0 — 1 (top right), l0 = 2 (bottom left) and l0 = 3 
(bottom right) modes. The horizontal variation of the radial displacement from our 
models is shown with a solid line, and for comparison, the pure spherical harmonics are 
shown with a dashed line. Although the horizontal variations are somewhat distorted, 
they are still clearly recognizable as the first four spherical harmonics. 
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Figure 4.8: The horizontal variation of the radial eigenfunction for a model rotating at 240 km s _ 1 . 
Shown are the shapes of the l0 = 0 (top solid), l0 = 1 (dashed), l0 = 2 (dot-dashed) and 
l0 = 3 (lower solid) modes. At this velocity, the shapes of the mode are more distorted 
than at 120 km s _ 1 . 
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km s , the pulsation amplitude is still easily identifiable as produced by an l0 = 1 mode, despite 

the contribution of the I = 1 spherical harmonic dropping below 60 %. In an effort to determine how 

low the contribution must drop before the effects are noticeable in the amplitude ratios, we have 

also calculated this mode for a model rotating at 360 km s - 1 . Figure 4.9 shows the amplitude ratios 

for the l0 = 1 mode in the Walraven filter system as a function of increasing rotational velocity. At 

360 km s _ 1 , the variation of amplitude with wavelength deviates somewhat from the lower velocity 

models, but is within the same range. In fact, the variation now looks quite similar to that of the 

l0 = 3 mode at 240 km s _ 1 at high inclination angle (cf. Figure 4.11). Despite the similarities in 

amplitude ratio, the l0 = 1 mode is not dominated by a single spherical harmonic at 360 km s _ . 

Instead, the mode is composed of nearly equal contributions from the I = 1 (19 %), I = 9 (26 %) 

and I = 11 (25 %) spherical harmonics, vs. I = 1 (51 %), I = 7 (21 %) and / = 3 (15 %) at 240 

km s _ 1 . The contributions of the I = 5 and 9 components are also fairly significant, at 10 and 

13 % respectively. Clearly, the contribution from the dominant spherical harmonic has to drop 

significantly before there is a visible effect on photometric amplitudes. Despite the lack of a single 

dominant spherical harmonic, the combination of spherical harmonics at 360 km s~ still retains 

the general character of an l0 — 1 mode, and this is probably why there is so little difference in the 

photometric amplitudes. 

As with the inclination effects, the situation becomes more complicated when the l0 = 2 mode 

is taken into consideration. In this case, the minimum photometric amplitudes for the 120 km s~ 

and 240 km s _ 1 models (at i = 0° and i = 50°) coincide with the l0 = 0 amplitude curves at i 

= 90°. The shape of these curves is also quite similar, leaving us with no obvious technique for 

discriminating between these two modes. Similarly, the maximum photometric amplitude for the l0 

= 2 mode overlaps with the l0 = 1 mode. In this case, the overlap is not as close as with the l0 = 0 

mode, and extremely precise photometric observations may be able to distinguish between the two, 

although this seems unlikely. Nevertheless, the amplitudes of both the l0 = 0 and 1 modes remain 

inside the range of possible amplitudes for the l0 = 2 modes (Figure 4.10), and misidentification of 

the degree of the mode is certainly possible. 
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Figure 4.9: Walraven amplitude ratios for the l0 = 1 mode for surface equatorial rotation velocities 
of 0 km s _ 1 (solid), 120 km s _ 1 (dashed), 240 km s"1 (dot-dashed) and 360 km s - 1 

(heavy solid). There is a clear progression from 0-240 km s _ 1 , while the 360 km s - 1 

model breaks with the trend and shows a different profile. All of these models are shown 
at a typical inclination of i = 50°. 
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Figure 4.10: The amplitude ratios for the l0 = 0 (solid) and 1 (dashed) modes at i = 50° compared 
to the maximum and minimum for the l0 = 2 mode (dot-dashed) at 240 km s_1 . The 
close overlap between these modes makes misidentification using this technique quite 
possible. 
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Figure 4.11: The maximum and minimum amplitude ratio for the l0 = 3 mode (solid), as well as at 
i = 20° (dot-dashed) at 240 km s _ 1 . At this rotation speed, the low inclinations begin 
to mimic the shape of the l0 = 1 amplitude ratio (dashed), shown here at i = 50°. 

The l0 = 3 modes also overlap with the l0 = 0, 1 and 2 modes, but the shape of these curves 

appears to be sufficiently different that discrimination is still possible. This is certainly true at 120 

km s _ 1 , but may be less so at 240 km s _ 1 . In this case, the l0 — 3 mode at low inclinations begins to 

mimic the l0 = 1 mode, as shown in Figure 4.11. The agreement is not exact, but appears somewhat 

closer than at 120 km s~ . 

When the effects of rotation and inclination are considered all together, as in Figure 4.12, the 

extent to which misinterpretation is probable becomes apparent. As discussed above, the range of 

photometric amplitudes for the l0 = 2 modes neatly brackets the curves for all other modes, and 

this is the primary source of confusion. The l0 = 0 and 1 modes remain distinct from each other, 

and while the l0 = 3 modes are also in the same region, the shape is sufficiently distinct, except at 

the very highest rotation rates, to avoid confusion. 

When rotation and inclination effects are taken into account, we find that there is scope for 

misidentification of modes, particularly the l0 = 2 modes. Unfortunately, due to the large spread 
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Figure 4.12: The minimum and maximum photometric amplitude in the Walraven filters for each 
mode over the range of surface equatorial velocity considered here. This shows the 
largest and smallest amplitude curve for each mode when both rotational and inclination 
effects are taken into account, so the curves shown are a mixture of rotation rates. 
Shown are l0 = 0 (solid), l0 = 1 (dashed), l0 = 2 (dot-dashed) and l0 = 3 (heavy solid). 
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in photometric amplitude ratios with inclination in the rotating models, it is virtually impossible 

to rule this mode out, unless the shape of the mode identifies it as an l0 = 3 mode. In the case of 

a non-rotating star, the spread in photometric amplitude ratio remains small enough for all modes 

that unambiguous mode identification is possible. 

4.5 Higher Order Radial Harmonics 

In this paper, we have addressed photometric identification using the variation in photometric am

plitude as a function of wavelength. Mode identification can also be performed using other com

binations of observables. When mode identification is performed using the photometric amplitude 

vs. wavelength, it is often assumed that the results are independent of radial order n. Nonadiabatic 

observables, such as the ratio of color to light amplitude vs. phase, may be able to discriminate 

between pi and p2 modes, at least in the case of radial modes (Cugier et al, 1994). For non-rotating 

stars this is a reasonable assumption, as the horizontal variation depends only on I and m. Al

though the absolute amplitude of the mode varies, when these are normalized the resulting variation 

as a function of wavelength should be independent of n. For rotating stars this may not be the 

case. In some cases, particularly for very rapid rotation, the horizontal variation of the mode at a 

given rotation rate does vary with radial order, and this effect may be reflected in the photometric 

amplitudes. 

To test this, we have calculated photometric amplitudes for the p\ modes for a model rotating 

at 120 km s _ 1 . In section 4.4 we showed that increased rotation, and the accompanying distortion 

in the eigenfunction, produced some spread in the photometric amplitudes. Generally, the modes 

each retain their distinct character. Therefore, even for the level of distortion seen in Figure 4.13, 

we expect the effects on the photometric amplitudes to be minimal. The resulting spread is largest 

for the l0 = 0 mode (see Figure 4.14) where the distortion in the horizontal variation is also largest. 

Although this variation is comparatively large, it is unlikely to result in ambiguity. The model could 

perhaps be interpreted as rotating more rapidly than it actually is, but the variation is not large 

enough to overlap with the l0 = 1 mode. The variation for the other modes considered here is 
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Figure 4.13: Horizontal variation in the radial eigenfunction for the l0 = 0 (top left), l0 = 1 (top 
right), l0 = 2 (bottom left) and l0 = 3 (bottom right) modes in a model rotating at 
120 km s _ 1 . Shown are the shapes for the / mode (solid) and p\ (dashed). Unlike 
non-rotating models, the horizontal variation depends on n as well as I. 

minimal, with the l0 = 3 (shown in Figure 4.15) a typical case. 

Although the difference in photometric amplitude ratio between the / and pi mode is minimal, 

rotation can impede identification of the radial order of the mode in other ways. Radial order is 

often determined from the basic properties of the star and an estimate of the fundamental period. 

However, as discussed in Collins (1966); Hardorp & Strittmatter (1968); Maeder & Peytremann 

(1970); Linnell & Hubeny (1994); Gillich et al. (2008), rotation can change the apparent location in 

the HR diagram. This may result in large uncertainties in the fundamental parameters of the star 

if the star is rotating sufficiently rapidly, which in turn may make the identification of the radial 

order uncertain. Based on the variation of deduced effective temperature and luminosity calculated 

by Gillich et al. (2008), a model rotating at 100 km s _ 1 could produce a difference in the pulsation 

frequency of the fundamental mode of about 5 % relative to that one would obtain for a spherical 

model with the same luminosity and effective temperature. At higher rotation rates, where the 

variation in deduced luminosity and effective temperature is larger, this difference would increase as 



Chapter 4. Effects of Rotation on Photometric Mode Identification 104 

3000 3500 4000 4500 5000 5500 
Wavelength (Angstroms) 

Figure 4.14: The amplitude variation for the lo — 0pi mode (solid) in a model rotating at 120 km s 
in the Walraven filter system. The dashed lines show the maximum and minimum values 
for the / mode. The variation in amplitude for the p\ mode is larger than the / mode. 
The dot-dashed lines show the amplitude range for the l0 = 1 / mode. 
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Figure 4.15: The amplitude variation for the l0 = 3 p\ mode for a model rotating at 120 km s _ 1 . 
The dashed lines show the minimum and maximum amplitudes for the / mode in the 
same model. 

well. 

4.6 Conclusion 

We have found that the spread in photometric amplitude produced by changing inclination is greater 

than has perhaps been considered previously, although it is not large enough by itself to cause 

misidentification of the modes in non-rotating stars using the photometric amplitudes. For the l0 = 

0 and 1 modes, the differences produced by inclination are probably not large enough to be of any 

concern. The l0 = 2 mode produces some variation, but not enough to cause ambiguity in mode 

identification. The effects for the l0 = 3 mode are larger, and cover some of the same range as the 

lo = 0 and 1 modes. However, the variation of the amplitudes of this mode with wavelength are 

sufficiently different that the risks of misidentification should be minimal. 

Rotation increases the spread in photometric amplitude as a function of inclination so that mode 

identification becomes compromised. In particular, the amplitude variation in the l0 = 2 mode 
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is large enough that it could be identified as the l0 = 0 or 1 modes, depending on the angle of 

inclination. As with the non-rotating case, the variation of the amplitude with wavelength for the 

l0 = 3 mode follows a different pattern, and this mode should not be confused with other modes at 

moderate rotation rates. At higher rotation rates (240 km s _ 1 ) , the l0 = 3 mode at low inclinations 

begins to look like the l0 = 1 mode. 

We have also considered the effects of rotation on the photometric amplitudes of the p\ modes in 

the model rotating at 120 km s _ . Although the horizontal variation of the radial eigenfunction is 

found to vary with increasing radial quantum number n, the increasing contamination by higher order 

spherical harmonics is not large enough to significantly affect the photometric mode identification, 

except in the case of the l0 = 0 mode. 
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Chapter 5 

Conclusions 

I have investigated the interplay between rotation and stellar pulsation. In Chapter 2 I have shown 

that six spherical harmonics are needed to accurately calculate eigenfunctions and eigenfrequencies in 

stellar models rotating at velocities up to 400 km s _ 1 for a 10 M Q ZAMS model. Current techniques 

generally assume that, for slowly rotating models, the eigenfunction can be modelled using a single 

spherical harmonic. This assumption is expected to be true for slowly rotating stars, and I find that 

it is, although the exact rotation limit depends on the pulsation mode. For some non-radial modes, 

one spherical harmonic is sufficient up to at most 165 km s _ 1 , although typically more spherical 

harmonics are required at rotation velocities of 50-70 km s _ 1 . The eigenfrequencies are somewhat 

less influenced by rotation, and a single spherical harmonic can be used to calculate pulsation periods 

up to 180 km s _ 1 , and for some low order modes, the approximation is valid as high as 390 km s~ . 

My results show that second order perturbation theory, the most common method for calculating 

pulsation frequencies in a rotating star is consistent with our results to at least 400 km s~ for 

low order modes. For higher order modes, perturbation theory and our results diverge at surface 

equatorial velocities of around 200 km s _ 1 . 

The actual behaviour of the eigenfunctions under the influence of rotation is discussed in Chapter 

3. I have found that for uniformly rotating models the frequencies decrease as rotation rate is 

increased, while for differentially rotating models, the frequencies can either increase or decrease with 

respect to those of uniformly rotating models with increasing differential rotation. For differential 

rotation, the chage is small, typically around 1% for the most extreme differential rotation models 

calculated. 

I also calculated large and small separations for these models. In some cases, there are indica

tions that it may be possible to use these properties to constrain the internal angular momentum 
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distribution of the star. However, given the degeneracy of effects from rotation rate and angular 

momentum distribution, convective overshoot, evolutionary stage, metallicity, etc., it seems unlikely 

that the very limited pulsation frequencies one expects to be available will give a unique solution. 

Constraining the internal angular momentum distribution at all will not be possible without ac

curate mode identification. One way to do this uses photometric techniques, commonly photometric 

amplitudes as a function of wavelength. The details of the variation depend on the mode observed, 

and the variation can be used to identify the I value of a pulsation mode. This assumes that the 

pulsation mode is a pure spherical harmonic, and as shown in Chapter 2, the exact horizontal shape 

of the eigenfunction can be quite sensitive to rotation. I have found that the rotational distortion 

of the eigenfunction has little effect on the photometric amplitudes of the l0 = 0 and 1 modes. 

Unfortunately, the photometric amplitudes of the l0 = 2 mode in rotating stars covers a wide range 

of of values, and this mode can easily be confused with the l0 — 0 or 1 mode, even at relatively low 

rotation. Rotation also causes the photometric amplitudes in the l0 = 3 mode to spread over a wide 

range of values. At slow rotation however, the slope of the variation with wavelength is significantly 

different from the other modes, so it should still be possible to identify an l0 = 3 mode separately, 

just by the shape. At higher rotation rates, this is no longer true at all inclination angles, and the 

photometric amplitudes of the l0 = 3 mode at low inclinations begins to mimic those of the l0 = 1 

mode. 

If observed modes are to be used to constrain the structure and evolution of rotating stars, we 

must be able to understand the pulsation characteristics and identify the modes. Unfortunately, 

the results presented here indicate that understanding pulsation in rotating stars is perhaps even 

more complicated than previously thought. Although rotation can have a significant effect on the 

pulstaion frequencies, it is not clear that the changes produced are unique. Photometric mode 

identification is also complicated by rotation and misidentification of a given mode is likely. These 

effects all need to be taken into consideration when interpreting observations of rotating stars, but 

unfortunately they collectively seem to make the situation more complicated. 

Although this work has shown some promising hints that pulsation can be used to constrain 
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stellar rotation, there is still much work to be done in this area. The work shown in Chapter 

4 covers only uniformly rotating models. As the horizontal variation in the radial eigenfunctions 

of the differentially rotating models becomes more complicated at lower rotation rates than the 

uniformly rotating models, the influence on photometric amplitudes may be greater. 

This study has, for the sake of simplicity, been entirely restricted to axisymmetric modes. Ob-

servationally, nonaxisymmetric modes have been observed in many stars, and it would be interesting 

to test our expectation that these results hold for m =£ 0. Also, all of these models have been 10 

MQ ZAMS models, which represents the low mass end of the j3 Cephei range. Although the results 

presented here are not expected to depend significantly on mass, an extension of this work to other 

masses is needed to verify this. These 10 M Q ZAMS models are suitable for a general compari

son to (3 Cephei stars, evolved main sequence models would be more realistic. This would present 

many challenges, as evolution is known to significantly complicate the pulsation spectrum (see e.g., 

Daszyhska-Daszkiewicz et al., 2002). 

Finally, it is desirable to investigate non-adiabatic effects in these modes with the same level of 

capability for treating rotation as we have done here for adiabatic modes. Given that these stars have 

significant variation across the surface, it is thought that certain modes may be driven more strongly 

in some regions of the star than others. This may result in a rotating star having different amplitudes 

than it's non-rotating countepart, or perhaps even a completely different pulsation spectrum. The 

effects related to pulsational instability can only be investigated with a non-adiabatic pulsation code. 

To really understand a star, we would ideally know its mass, actual luminosity and effective 

temperature, composition, rotation rate (veq), and its angular momentum distribution. Observations 

will give us the metallicity, acceleration due to gravity, effective temperature, luminosity (a function 

of distance and inclination), vsini, and for pulsating stars, a collection of frequencies. If one can 

determine i, based on these observations, one can find the actual luminosity, as well as the surface 

equatorial velocity, veq. In some cases, i can be determined through spectral line fitting, and there 

are indications that the rotation profile can be determined this way as well, although it is not clear 

that both can be determined simultaneously. However, for most stars, asteroseismology remains our 
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most likely tool for determining the inclination i and the angular momentum distribution assuming 

that the requency spectrum is unique for a given rotation rate. Doing so remains a complex process, 

governed by the interplay of many different factors. In this work, I have found both some hints that 

this may be possible, as well as factors which make the process more difficult. Clearly, much further 

work in this field is needed before we can understand rotating stars as well as we do non-rotating 

stars. 
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