Fabrication of multidimensional surface-enhanced Raman spectroscopy (SERS) substrates using bioscaffolds

Show simple item record

dc.contributor.advisor Brosseau, Christa L.
dc.creator St. Marie, Gaius
dc.date.accessioned 2019-05-13T15:01:13Z
dc.date.available 2019-05-13T15:01:13Z
dc.date.issued 2019
dc.identifier.uri http://library2.smu.ca/handle/01/28586
dc.description 1 online resource (xiv, 78 p.) : illustrations (some colour)
dc.description Includes abstract and appendix.
dc.description Includes bibliographical references (p. 60-67).
dc.description.abstract Plasmonics is the field of research which explores the unique optical and electronic effects observed when certain nanoscale metals interact with light. Plasmonic nanostructures that are uniform in size and shape are highly desirable for many applications, including plasmon-enhanced solar cells. Unfortunately, plasmonic structures are difficult and costly to prepare, which limits their widespread application in society. In this work, biological materials are used as scaffolds for the production of highly functional plasmonic materials. This thesis work explores five different biological materials: blue mussel shells, scarab beetle elytra, buttercup petals, damselfly wings and Japanese rice fish scales that are abundant in nature and exhibit interesting nanoscale order. Scanning Electron Microscopy (SEM) and Surface-Enhanced Raman Spectroscopy (SERS) were used to characterize each bioscaffold with a focus on developing an optimal substrate by varying the deposition parameters for physical vapour deposition (PVD). The results of this work demonstrate the significant enhancement of the SERS spectra in the case of both damselfly wings and buttercup petals and highlights the promise of using these bioscaffolds as affordable and sustainable SERS-active substrates. en_CA
dc.description.provenance Submitted by Greg Hilliard (greg.hilliard@smu.ca) on 2019-05-13T15:01:13Z No. of bitstreams: 1 St.Marie_Gaius_Honours_2019.pdf: 4130788 bytes, checksum: 5bc4a2933768eeebf607dbd57cacfccc (MD5) en
dc.description.provenance Made available in DSpace on 2019-05-13T15:01:13Z (GMT). No. of bitstreams: 1 St.Marie_Gaius_Honours_2019.pdf: 4130788 bytes, checksum: 5bc4a2933768eeebf607dbd57cacfccc (MD5) Previous issue date: 2019-04-18 en
dc.language.iso en en_CA
dc.publisher Halifax, N.S. : Saint Mary's University
dc.title Fabrication of multidimensional surface-enhanced Raman spectroscopy (SERS) substrates using bioscaffolds en_CA
dc.type Text en_CA
thesis.degree.name Bachelor of Science (Honours Chemistry)
thesis.degree.level Undergraduate
thesis.degree.discipline Chemistry
thesis.degree.grantor Saint Mary's University (Halifax, N.S.)
 Find Full text

Files in this item

 
 

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account