dc.contributor.advisor |
Mastnak, Mitja |
|
dc.creator |
Sharpe, Owen |
|
dc.date.accessioned |
2020-08-25T14:48:20Z |
|
dc.date.available |
2020-08-25T14:48:20Z |
|
dc.date.issued |
2020 |
|
dc.identifier.uri |
http://library2.smu.ca/xmlui/handle/01/29392 |
|
dc.description |
1 online resource (36 pages) : illustrations |
|
dc.description |
Includes abstract. |
|
dc.description |
Includes bibliographical references (page 36). |
|
dc.description.abstract |
We define a Hopf algebra and give a variety of examples of varying complexity. To facilitate the definition, we first define the commutative diagram, the tensor product, and an algebra/coalgebra/bialgebra. We briefly discuss the duality between algebras and coalgebras. Prior to introducing the non-commutative Hopf algebras of Sweedler and Taft, we define the q-binomial coefficient and prove a related lemma from q-series which allows an explicit formula for the coproduct of a Taft algebra. |
en_CA |
dc.description.provenance |
Submitted by Greg Hilliard (greg.hilliard@smu.ca) on 2020-08-25T14:48:20Z
No. of bitstreams: 1
Sharpe_Owen_Honours_2020.pdf: 316632 bytes, checksum: 6cdc40f8e187bbb620704d8e9934c953 (MD5) |
en |
dc.description.provenance |
Made available in DSpace on 2020-08-25T14:48:20Z (GMT). No. of bitstreams: 1
Sharpe_Owen_Honours_2020.pdf: 316632 bytes, checksum: 6cdc40f8e187bbb620704d8e9934c953 (MD5)
Previous issue date: 2020-05-21 |
en |
dc.language.iso |
en |
en_CA |
dc.publisher |
Halifax, N.S. : Saint Mary's University |
|
dc.title |
Hopf algebras : definitions and examples |
en_CA |
dc.type |
Text |
en_CA |
thesis.degree.name |
Bachelor of Science (Honours Mathematics) |
|
thesis.degree.level |
Undergraduate |
|
thesis.degree.discipline |
Mathematics and Computing Science |
|
thesis.degree.grantor |
Saint Mary's University (Halifax, N.S.) |
|