Guenther, David B.; Huber, D.; Saio, H.; Gruberbauer, Michael; Weiss, W. W.; Rowe, J. F.; Hareter, M.; Kallinger, T.; Reegen, P.; Matthews, J. M.
Abstract:
Context. We present 31.2 days of nearly continuous MOST photometry of the rapidly oscillating Ap star 10 Aql.
Aims. The goal was to provide an unambiguous frequency identification for this little studied star, as well as to discuss the detected frequencies in the context of magnetic models and analyze the influence of the magnetic field on the pulsation.
Methods. Using traditional Fourier analysis techniques on three independent data reductions, intrinsic frequencies for the star are identified. Theoretical non-adiabatic axisymmetric modes influenced by a magnetic field having polar field strengths B[subscript p] = 0–5 kG were computed to compare the observations to theory.
Results. The high-precision data allow us to identify three definite intrinsic pulsation frequencies and two other candidate frequencies with low S/N. Considering the observed spacings, only one ([delta]ν = 50.95 [micro]Hz) is consistent with the main sequence nature of roAp stars. The comparison with theoretical models yields a best fit for a 1.95 M[subscript circled dot] model having solar metallicity, suppressed envelope convection, and homogenous helium abundance. Furthermore, our analysis confirms the suspected slow rotation of the star and sets new lower limits to the rotation period (P[subscript rot] [greater than or equal to] 1 month) and inclination (i [greater than] 30 [plus or minus] 10[degrees]).
Conclusions. The observed frequency spectrum is not rich enough to unambiguously identify a model. On the other hand, the models hardly represent roAp stars in detail due to the approximations needed to describe the interactions of the magnetic field with stellar structure and pulsation. Consequently, errors in the model frequencies needed for the fitting procedure can only be estimated. Nevertheless, it is encouraging that models which suppress convection and include solar metallicity, in agreement with current concepts of roAp stars, fit the observations best.