dc.creator |
Williamson, David John |
|
dc.creator |
Thacker, Robert John, 1970- |
|
dc.creator |
Wurster, James Howard |
|
dc.creator |
Gibson, Brad K. |
|
dc.date.accessioned |
2018-04-12T17:50:59Z |
|
dc.date.available |
2018-04-12T17:50:59Z |
|
dc.date.issued |
2014-08-21 |
|
dc.identifier.issn |
0035-8711 |
|
dc.identifier.uri |
http://library2.smu.ca/handle/01/27411 |
|
dc.description |
Publisher's Version/PDF |
|
dc.description.abstract |
We examine simulations of isolated galaxies to analyse the effects of localized feedback on the formation and evolution of molecular clouds. Feedback contributes to turbulence and the destruction of clouds, leading to a population of clouds that is younger, less massive, and with more retrograde rotation. We investigate the evolution of clouds as they interact with each other and the diffuse interstellar medium, and determine that the role of cloud interactions differs strongly with the presence of feedback: in models without feedback, scattering events dramatically increase the retrograde fraction, but in models with feedback, mergers between clouds may slightly increase the prograde fraction. We also produce an estimate of the viscous time-scale due to cloud–cloud collisions, which increases with increasing strength of feedback (t<sub>ν</sub> ∼ 20 Gyr versus t<sub>ν</sub> ∼ 10 Gyr), but is still much smaller than previous estimates (t<sub>ν</sub> ∼ 1000 Gyr); although collisions become more frequent with feedback, less energy is lost in each collision than in the models without feedback. |
en_CA |
dc.description.provenance |
Submitted by Betty McEachern (betty.mceachern@smu.ca) on 2018-04-12T17:50:58Z
No. of bitstreams: 1
Williamson_David__J_article_2014.pdf: 1271319 bytes, checksum: f178301b76fbdd3c43f646a1a237618f (MD5) |
en |
dc.description.provenance |
Made available in DSpace on 2018-04-12T17:50:59Z (GMT). No. of bitstreams: 1
Williamson_David__J_article_2014.pdf: 1271319 bytes, checksum: f178301b76fbdd3c43f646a1a237618f (MD5)
Previous issue date: 2014-08-24 |
en |
dc.language.iso |
en |
en_CA |
dc.publisher |
Oxford University Press |
en_CA |
dc.relation.uri |
https://dx.doi.org/10.1093/mnras/stu1121 |
|
dc.rights |
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. |
|
dc.subject.lcsh |
Molecular clouds |
|
dc.subject.lcsh |
Galactic dynamics |
|
dc.subject.lcsh |
Hydrodynamics |
|
dc.subject.lcsh |
Interstellar matter |
|
dc.title |
Cloud angular momentum and effective viscosity in global SPH simulations with feedback |
en_CA |
dc.type |
Text |
en_CA |
dcterms.bibliographicCitation |
Monthly Notices of the Royal Astronomical Society 442(4), 3674-3685. (2014) |
en_CA |