Page, Samantha W.
Abstract:
With the projected increase in global mean sea level rise, small coastal communities face formidable challenges as they seek to sustainably manage their coastal assets and resources impacted by sea level rise (SLR). Consequently, it has become increasingly important to assess a community’s coastal vulnerability. In collaboration with the Partnership for Canada-Caribbean Community Climate Change Adaptation (ParCA) project, the aim of this research was twofold: 1) develop a tool to assess relative physical coastal vulnerability to erosion, incorporating the geomorphic components of assailing, resistance, and resilience characteristics and 2) apply the tool to Lockeport, Nova Scotia under four wave energy scenarios to simulate how the addition of storm winds and increases in water depths associated with climate change conditions changes the wave energy reaching the shoreline; ultimately allowing for the determination of coastline and building vulnerability to erosion and inundation. The identification of areas and buildings most vulnerable to SLR-induced erosion and inundation, under varying wave energy scenarios, is meant to guide coastal planning and SLR adaptation strategies in the Town of Lockeport, Nova Scotia.