Hopf algebras : definitions and examples

Show simple item record

dc.contributor.advisor Mastnak, Mitja
dc.creator Sharpe, Owen
dc.date.accessioned 2020-08-25T14:48:20Z
dc.date.available 2020-08-25T14:48:20Z
dc.date.issued 2020
dc.identifier.uri http://library2.smu.ca/xmlui/handle/01/29392
dc.description 1 online resource (36 pages) : illustrations
dc.description Includes abstract.
dc.description Includes bibliographical references (page 36).
dc.description.abstract We define a Hopf algebra and give a variety of examples of varying complexity. To facilitate the definition, we first define the commutative diagram, the tensor product, and an algebra/coalgebra/bialgebra. We briefly discuss the duality between algebras and coalgebras. Prior to introducing the non-commutative Hopf algebras of Sweedler and Taft, we define the q-binomial coefficient and prove a related lemma from q-series which allows an explicit formula for the coproduct of a Taft algebra. en_CA
dc.description.provenance Submitted by Greg Hilliard (greg.hilliard@smu.ca) on 2020-08-25T14:48:20Z No. of bitstreams: 1 Sharpe_Owen_Honours_2020.pdf: 316632 bytes, checksum: 6cdc40f8e187bbb620704d8e9934c953 (MD5) en
dc.description.provenance Made available in DSpace on 2020-08-25T14:48:20Z (GMT). No. of bitstreams: 1 Sharpe_Owen_Honours_2020.pdf: 316632 bytes, checksum: 6cdc40f8e187bbb620704d8e9934c953 (MD5) Previous issue date: 2020-05-21 en
dc.language.iso en en_CA
dc.publisher Halifax, N.S. : Saint Mary's University
dc.title Hopf algebras : definitions and examples en_CA
dc.type Text en_CA
thesis.degree.name Bachelor of Science (Honours Mathematics)
thesis.degree.level Undergraduate
thesis.degree.discipline Mathematics and Computing Science
thesis.degree.grantor Saint Mary's University (Halifax, N.S.)
 Find Full text

Files in this item

 
 

This item appears in the following Collection(s)

Show simple item record