Determination of the Neutron-Capture Rate of 17C for the R-process Nucleosynthesis
Heine, M.; Typel, S.; Wu, M.-R.; Adachi, T.; Aksyutina, Y.; Alcantara, J.; Altstadt, S.; Alvarez-Pol, H.; Ashwood, N.; Atar, L.; Aumann, T.; Avdeichikov, V.; Barr, M.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Burgunder, G.; Caamano, M.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkall, J.; Chakraborty, S.; Chartier, M.; Chulkov, L. V.; Cortina-Gil, D.; Crespo, R.; Datta Pramanik, U.; Dıaz Fernandez, P.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estrade, A.; Kanungo, R.
Date:
2017-01-30
Type:
Text
ISSN: 2469-9985
Source:
Physical Review C 95(1), 014613. (2017)
Abstract:
With the R3B-LAND setup at GSI we have measured exclusive relative-energy spectra of the Coulomb dissociation of 18C at a projectile energy around 425A MeV on a lead target, which are needed to determine the radiative neutron-capture cross sections of 17C into the ground state of 18C. Those data have been used to constrain theoretical calculations for transitions populating excited states in 18C. This allowed to derive the astrophysical cross section σ∗nγ accounting for the thermal population of 17C target states in astrophysical scenarios. The experimentally verified capture rate is significantly lower than those of previously obtained Hauser-Feshbach estimations at temperatures T9≤1 GK. Network simulations with updated neutron-capture rates and hydrodynamics according to the neutrino-driven wind model as well as the neutron-star merger scenario reveal no pronounced influence of neutron capture of 17C on the production of second- and third-peak elements in contrast to earlier sensitivity studies.
Description:
Accepted Version
Subject:
- Nucleosynthesis
- Neutrons -- Capture
- Astrophysics
Show full item record