dc.creator |
Heine, M. |
|
dc.creator |
Typel, S. |
|
dc.creator |
Wu, M.-R. |
|
dc.creator |
Adachi, T. |
|
dc.creator |
Aksyutina, Y. |
|
dc.creator |
Alcantara, J. |
|
dc.creator |
Altstadt, S. |
|
dc.creator |
Alvarez-Pol, H. |
|
dc.creator |
Ashwood, N. |
|
dc.creator |
Atar, L. |
|
dc.creator |
Aumann, T. |
|
dc.creator |
Avdeichikov, V. |
|
dc.creator |
Barr, M. |
|
dc.creator |
Beceiro-Novo, S. |
|
dc.creator |
Bemmerer, D. |
|
dc.creator |
Benlliure, J. |
|
dc.creator |
Bertulani, C. A. |
|
dc.creator |
Boretzky, K. |
|
dc.creator |
Borge, M. J. G. |
|
dc.creator |
Burgunder, G. |
|
dc.creator |
Caamano, M. |
|
dc.creator |
Caesar, C. |
|
dc.creator |
Casarejos, E. |
|
dc.creator |
Catford, W. |
|
dc.creator |
Cederkall, J. |
|
dc.creator |
Chakraborty, S. |
|
dc.creator |
Chartier, M. |
|
dc.creator |
Chulkov, L. V. |
|
dc.creator |
Cortina-Gil, D. |
|
dc.creator |
Crespo, R. |
|
dc.creator |
Datta Pramanik, U. |
|
dc.creator |
Dıaz Fernandez, P. |
|
dc.creator |
Dillmann, I. |
|
dc.creator |
Elekes, Z. |
|
dc.creator |
Enders, J. |
|
dc.creator |
Ershova, O. |
|
dc.creator |
Estrade, A. |
|
dc.creator |
Kanungo, R. |
|
dc.date.accessioned |
2021-08-10T15:46:53Z |
|
dc.date.available |
2021-08-10T15:46:53Z |
|
dc.date.issued |
2017-01-30 |
|
dc.identifier.issn |
2469-9985 |
|
dc.identifier.uri |
http://library2.smu.ca/xmlui/handle/01/29733 |
|
dc.description |
Accepted Version |
en_CA |
dc.description.abstract |
With the R<sup>3</sup>B-LAND setup at GSI we have measured exclusive relative-energy spectra of the Coulomb dissociation of <sup>18</sup>C at a projectile energy around 425A MeV on a lead target, which are needed to determine the radiative neutron-capture cross sections of <sup>17</sup>C into the ground state of <sup>18</sup>C. Those data have been used to constrain theoretical calculations for transitions populating excited states in <sup>18</sup>C. This allowed to derive the astrophysical cross section σ<sup>∗</sup><sub>nγ</sub> accounting for the thermal population of <sup>17</sup>C target states in astrophysical scenarios. The experimentally verified capture rate is significantly lower than those of previously obtained Hauser-Feshbach estimations at temperatures T<sub>9</sub>≤1 GK. Network simulations with updated neutron-capture rates and hydrodynamics according to the neutrino-driven wind model as well as the neutron-star merger scenario reveal no pronounced influence of neutron capture of <sup>17</sup>C on the production of second- and third-peak elements in contrast to earlier sensitivity studies. |
en_CA |
dc.description.provenance |
Submitted by Sherry Briere (sherry.briere@smu.ca) on 2021-08-10T15:46:53Z
No. of bitstreams: 1
Estrade_A_article_2017_3.pdf: 903554 bytes, checksum: cb5b0fcab5bb6c9914b5148befb3664a (MD5) |
en |
dc.description.provenance |
Made available in DSpace on 2021-08-10T15:46:53Z (GMT). No. of bitstreams: 1
Estrade_A_article_2017_3.pdf: 903554 bytes, checksum: cb5b0fcab5bb6c9914b5148befb3664a (MD5)
Previous issue date: 2017-01-30 |
en |
dc.language.iso |
en |
en_CA |
dc.publisher |
American Physical Society |
en_CA |
dc.relation.uri |
https://doi.org/10.1103/PhysRevC.95.014613 |
|
dc.subject.lcsh |
Nucleosynthesis |
|
dc.subject.lcsh |
Neutrons -- Capture |
|
dc.subject.lcsh |
Astrophysics |
|
dc.title |
Determination of the Neutron-Capture Rate of 17C for the R-process Nucleosynthesis |
en_CA |
dc.title.alternative |
Determination of the Neutron-Capture Rate of Carbon-17 for the R-process Nucleosynthesis |
|
dc.type |
Text |
en_CA |
dcterms.bibliographicCitation |
Physical Review C 95(1), 014613. (2017) |
en_CA |