Determination of point proton radii of neutron-rich carbon isotopes

Show simple item record

dc.contributor.advisor Kanungo, Rituparna
dc.coverage.spatial Japan
dc.creator Subramaniyam, Pranav
dc.date.accessioned 2022-10-31T14:20:25Z
dc.date.available 2022-10-31T14:20:25Z
dc.date.issued 2022-10-20
dc.identifier.uri http://library2.smu.ca/xmlui/handle/01/31163
dc.description 1 online resource (xvi, 125 pages) : colour illustrations, charts (some colour), graphs (some colour)
dc.description Includes abstract.
dc.description Includes bibliographical references (pages 114-125).
dc.description.abstract Exotic features like the halo and the (dis)appearance of the magic numbers were revealed by investigating the nuclei towards the neutron-rich region that have a large neutron/proton asymmetry. Investigating the evolution of proton radii together with the matter radii along an isotopic chain will allow us to characterize the halo formation, neutron skin thickness, and shell evolution around the neutron drip-line. The first determination of the point proton radii of neutron-rich carbon isotopes <sup>20,22</sup>C is presented in this work. The proton radii of these neutron-rich carbon isotopes were determined from a measurement of the charge-changing cross-section &sigma;<sub>cc</sub>, defined as the sum of cross sections of reactions that changes the atomic-number (<em>Z</em>). The experiment was performed at the BigRIPS facility at RIKEN Nishina Center in Japan, at a relativistic beam energy around &sim; 200<em>A</em> MeV with a carbon target. The proton radii were extracted from the measured &sigma;<sub>cc</sub> using the nite range Glauber model framework. The proton radii increase for <sup>20</sup>C and <sup>22</sup>C compared to the previously measured carbon isotopes <sup>12&minus;19</sup>C, showing signatures of the disappearance of shell closures at <em>N</em> =14 and <em>N</em> = 16 along this isotopic chain. The neutron skin thickness (∆<em>R</em><sub>np</sub>) of these neutron-rich carbon isotopes (<sup>20,<em>22</em></sup>C) is reported for the rst time in this thesis using the proton radii determined in this work and measured matter radii available from the literature. ∆<em>R</em><sub>np</sub> of 1.23 (20) fm is determined for the two-neutron halo, <sup>22</sup>C affirming the presence of a halo. The halo radius of 6.6 &plusmn; 1.1 fm in <sup>22</sup>C is found to be as large as <sup>11</sup>Li. The proton radii are compared to the predictions reported for these neutron-rich carbon isotopes. The experimental proton radii have challenged these predictions. en_CA
dc.description.provenance Submitted by Greg Hilliard (greg.hilliard@smu.ca) on 2022-10-31T14:20:25Z No. of bitstreams: 1 Subramaniyam_Pranav_PHD_2022.pdf: 23616662 bytes, checksum: 554017d7d5c8aa8d1a6cf22528dcad5c (MD5) en
dc.description.provenance Made available in DSpace on 2022-10-31T14:20:25Z (GMT). No. of bitstreams: 1 Subramaniyam_Pranav_PHD_2022.pdf: 23616662 bytes, checksum: 554017d7d5c8aa8d1a6cf22528dcad5c (MD5) Previous issue date: 2022-10-20 en
dc.language.iso en en_CA
dc.publisher Halifax, N.S. : Saint Mary's University
dc.subject.lcsh Carbon -- Isotopes -- Measurement
dc.subject.lcsh Neutron beams -- Measurement
dc.subject.lcsh Nuclear physics -- Japan
dc.subject.lcsh RIKEN Accelerator Facility
dc.title Determination of point proton radii of neutron-rich carbon isotopes en_CA
dc.type Text en_CA
thesis.degree.name Doctor of Philosophy in Applied Science
thesis.degree.level Doctoral
thesis.degree.discipline Astronomy and Physics
thesis.degree.grantor Saint Mary's University (Halifax, N.S.)
 Find Full text

Files in this item

 
 

This item appears in the following Collection(s)

Show simple item record